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PHYSICS 244 NOTES

Lecture 4 

Wavepackets

Introduction

We said before that, according to the wave equation, 

∂2y/∂t2 = v2 ∂2y / ∂x2 

localized disturbances could move through space.  (I have stuck with y as the waving quantity, but I want to encourage you to think of your favorite example – perhaps the electric field amplitude in a phone line.)  

The way that this works is that the single solution 

y(x,t) = y0 sin (kx-ωt)  depends on the parameters k and y0, but any values of k and y0 are fine, so this really represents an infinite set of solutions.  Because the equation is linear, (depends only on y, not y2 or y1/2, etc.), we can superpose solutions of all different k’s, and then

y(x,t) = Σk yk sin (kx-ωt) 

is also a good solution,  We can choose the yk so that y(x,t) is localized.  Furthermore, since ω = vk, the velocity of every component is the same, so the disturbance travels without losing its shape.  Very often, the whole goal of communications engineering is to set things up precisely so that this is the case:  it means that the signal that goes in at one end is the signal that goes out at the other, and there is no distortion.  The wave equation is the engineer’s very good friend. 

Superposition of two waves

Consider a signal that consists of two waves of slightly different wavenumbers k1 and k2.  Let Δk = k2 – k1 << k1 and Δk = k2 – k1 << k2.  

[DIAGRAM]

Also define kav = (k1+k2)/2.  Then a superposition of the two waves is given by

y(x) = y0 ( cos k1x + cos k2x ) 

        = 2y0 cos (kavx)  cos (Δk x/2)

You should prove this in detail, using trig identities.

This wave consists of a slow wave that gives the envelope, and a fast wave inside.  The spatial extent of the wave is Δx = 2π/Δk.
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More generally, we may superpose a large number of waves as above, or even a continuous distribution of them, each with a weight f(k), which I called yk above.  If this distribution has width σ, then we can call this Δk.  We also then get a wavepacket that satisfies Δx Δk >~ 2π.  (This is a theorem from Fourier analysis, which we won’t prove.)  

Bandwidth

Similarly, if we have a wave in time:

F(t) = cos ω1t +  cos ω2t+ cos ω3t+ cos ω4t +…, and the spread of the frequencies is Δω, then the length of the signal will be Δt = 2π/Δω.

So Δω Δt = 2π.  It Δω is big then Δt is small, meaning that the pulse for a single bit of information is very short, and the number of bits that can be sent per second is large.  Put another way, if bandwidth is high, then the baud rate is high.  This is the connection between bandwidth and digital information transfer.

Dispersion

We found for the classical wave equation that a wave travels at the speed v = ω/k, where ω is the angular frequency and k is the wavenumber.  We may also write this as ω = vk.  The wavepacket retains its shape as time passes.  This is usually roughly true for sound and light in everyday life, for example.

Waves, however, may disperse as they travel.  This occurs when there is a different relation between ω and k.  For example, water waves have a very significant k2 term in the dispersion relation: ω = vk + D k2.  Then if we superpose several different sinusoidal waves to make one packet, the different components move at different velocities, so the packet tends to spread.  Generally, the packet moves at an average speed called the group velocity.

∂ω/ ∂k evaluated at the average k is the group velocity.  Note that there is only one velocity for a wavepacket if the underlying physical equation is the usual wave equation, since it satisfies the nondispersive relation ω = vk and ∂ω/ ∂k = v.  But in a system that follows the dispersive equation ∂ω/ ∂k = v + 2 D k, a wavepacket will always spread, since, there are many k’s and each has a different speed.

Another thing that may occur is that there is a ∂y/∂t term added to the wave equation, this also tends to make the wave diffuse and be absorbed as it travels.  This is the one that bedeviled the first transatlantic telegraph cables.  Good engineering of a modern optical fiber cable means basically the minimization of all these extra terms in the wave equation for the electric field amplitude.

Heisenberg Uncertainty Principle (first pass)

In classical mechanics, the motion of a particle is described by a function r(t), the trajectory of the particle.  There is an assumption here that the particle itself is a point – which then cannot act like a wave, which is by definition an extended object.  Schroedinger realized this and said that the electron must be described a function ψ(x,t).  He was concerned about the hydrogen atom, but this description must also work for electrons moving about in space.  The only way that they could then be at least partially localized is to form a wavepacket.  If it is a packet, it must contain many cosine waves, so that

ψ(x) = ∫a(k) cos kx dk.  

Then we know from Fourier analysis that the spread in wavenumber is approximately related to the spread in position by 

Δx Δk ≥ 1.

Using the deBroglie relation, p = h / λ = h k / 2π = ħ k we get

Δx Δp ≥ ħ.

The precise statement is that Δx Δp ≥ ħ/2, and this lower limit is reached when a(k) is a Gaussian function.

This is the Heisenberg Uncertainty Principle.  It relates the uncertainty in the momentum p to the uncertainty in the position x, stating that if you reduce the one, the other must necessarily increase.  This form of the principle makes no reference to the observer disturbing the system, as some other formulations do.  It does make conceptual connections to the more familiar notion of bandwidth.

