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PHYSICS 244 NOTES

Lecture 33

Doped Semiconductors
Introduction

So far, we have talked only about pure semiconductors, also called “intrinsic” semiconductors, and we have focused on their properties at T = 0.  However, in this situation, a semiconductor might as well be an insulator.   What is interesting about semiconductors is what happens when the temperature is raised or properly chosen impurities are added to it.    

Thermal excitation and conduction

We have already mentioned that even pure semiconductors will conduct if heated because of thermal promotion of electrons from the valence band to the conduction band.  Now we are going to calculate this effect.  We will use the density of states that we computed long ago for electrons that satisfy the dispersion relation 

E = ħ2k2/2m*.  

Notice that there is a separate density for the valence band and the conduction band.

The dispersion relation for the conduction band is 

E(k) = Ec + ħ2k2/2m*c, while the dispersion relation for the valence band is

E(k) = Ev - ħ2k2/2m*v.

I have ignored some complications here, which will be mentioned below.  Ec is called the conduction band edge, while Ev is called the valence band edge. 

gc(E) = (E-Ec)1/2  (2mc*/ħ2)3/2 (1/2π2) for E > Ec and

gv(E) = (Ev-E)1/2  (2mv*/ħ2)3/2 (1/2π2) for E < Ev.
[[DIAGRAM]]

The number of conduction electrons is given by the integral of the Fermi function times the density of states function, where the integral must start at the bottom of the conduction band, which we will call Ec, and goes to infinity.   Since the number of holes empty states in the valence band) must equal the number of electrons (filled states in the conduction band), the Fermi energy (or more accurately, the chemical potential µ), must lie more or less in the middle of the band gap.  Indeed if the density of states for the conduction band and the valence band were exactly the same except for going in opposite directions in energy space, we would find μ right in the middle of the gap: 

μ=(Ec+Ev)/2, where Ev is the energy at the top of the valence band.  We find the number of conduction electrons for GaAs (m* = 0.067 me, Eg = 1.4 eV) as  
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nc(T)  = ∫Ec ∞ g(E) f(E) dE

          = ∫ (E-Ec)1/2  (2m*/ħ2)3/2 (1/2π2) [exp(E-µ)/kBT + 1]-1 dE
          = 2.5  (T / 300 K )3/2  exp ( - Eg / 2kBT) × 10 × 1019 / cm3
nc(T=300K) = 2.25 × 106 / cm3.

For Si, (Eg = 1.1 eV), we must take into account that there are 6 conduction band minima and that there are two effective masses.  The above calculation must be modified: the conduction-band density of states must be multiplied by 6, for example.  Without going into all the details, we find that at 300 K nc = 1.00 × 1010 / cm3 = 1.00 × 1018/m3.  

For Ge at 300 K with Eg = 0.67 eV, and four minima, we have 

nc = 2.5 × 1013 / cm3 = 2.5 × 1021/m3.   

From these three examples, one can see that the main thing that controls nc is the magnitude of the gap.    

These are about 10-12 to10-8 of typical metallic conduction electron densities.  Since 

σ = n e2 τ /m the conductivities of intrinsic semiconductors are always much lower than those of metals.  One interesting point, though, is that n is independent of T in a metal, but it is a strongly increasing function of temperature in an intrinsic semiconductor.  τ is always a decreasing function of temperature in both metals and semiconductors because of scattering from thermally-excited phonons (sound waves), but the T-dependence of τ is weaker than that of n, so σ increases with increasing temperature for a semiconductor, but σ decreases with temperature in a metal.

Impurities in semiconductors

If we had to work with pure semiconductors, they would have very few applications.  The reason that there is a semiconductor industry is that interesting stuff happens when semiconductors are doped with impurities.  

Let us consider adding an As atom to pure Ge (Z=32, electron configuration 4s24p2).  Each atom contributes 4 electrons in pure Ge.  We now add a single As 

(Z=33, electron configuration 4s24p3).

The As atom donates 5 electrons and leaves one additional positive charge behind.  On a simple picture, this electron would go right into the conduction band and convert the system into a metal (if there were enough of them).  For this reason, the As atom is called a donor atom, since it donates an electron to the system.  

This is not quite the whole story.  The positive charge left behind will attract the electron.  This is just as in the hydrogen atom, and we find energies

En = -(m*k2e4 / 2n2κ2ħ2).  κ is the dielectric constant. 

This formula is the same as in hydrogen atom except for the somewhat modified mass and the appearance of κ. Both of these modifications go in the direction of reducing the binding energy.  Remember that in hydrogen it is 13.6 eV.  κ is often as large as 10, so this is a big effect.
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E1 = 0.0127 eV for As in Ge.  This corresponds to about 100 K.

The ground state energies for donor levels are similar in other semiconductors.  For example, for group V donors in GaAs, we find E1 = 0.0058 eV.   

[[ENERGY LEVEL DIAGRAM]]

At temperatures lower than 50 K or so, we have freeze-out of carriers onto the donor states.  At T = 300 K, almost all the donors are thermally ionized, and we do indeed get a metallic state.  The ionization takes place at a lower temperature than one might expect just from thinking about the Boltzmann factor, which would give Tfreeze-out = E1/k.  Actually Tfreeze-out < E1/k because although the conduction band states are higher in energy than the donor states, they are much more numerous.  The number of donor states is proportional to the number of impurities, while the number of conduction band states is proportional to the number of atoms.  Very high doping levels only correspond to one part in a thousand.    Thus entropy favors ionization.  

For impurity densities of 1018 /cm3 or so, we can get conductivities at room temperature that are about 10-4 that of metals.  Semiconductors are not something you would want to wire your house with.  But their conductivity can be engineered, unlike that of a metal, which is pretty much fixed.  

This kind of semiconductor is called n-type, because the carriers of electrical current are the negatively charged electrons.  

An example of p-type is Ga in Si.  Si is 3s23p2 and Ga is 4s23p1.  The Ga atom wants to accept an electron.  This would create a bound acceptor state, again at 10 meV or so, but now just above the valence band.  Again, at T near room temperature, the acceptor states are ionized.  Then we have a hole in the valence band and the current carrier has the appearance of being positively charged.  This cannot be detected by the DC conductivity, but we can look at the transverse conductivity in a magnetic field.  This is called the Hall conductance and it can distinguish the sign of the charge carriers.

It is often useful to put both n-type and p-type impurities in the same host.  This is called a “compensated” semiconductor – completely compensated if there are equal numbers of the two types and partially compensated if the two types are unequal.  If completely compensated, all the electrons added by the donors are sucked up by the acceptors and there are no free carriers.

[[DIAGRAM]].

Doping of other materials besides the classic Group IV, III-V and II-VI systems is a very active field of research at present.  Wide gap insulators like C, (Eg = 7 eV) are generally hard to dope – an added electron has an energy 7 eV above the others, and the crystal usually finds a way to trap this electron in some lower energy state, by making a defect if necessary.  This is called self-compensation.  It does seem to be possible to dope C with B, however.  Other examples are the doping of organic systems such as polymers to make them conducting, and even doping of such classic insulators as ceramics and other oxides.  This is how high-temperature superconductors were discovered.   

