Note: All [DIAGRAMS] will be provided in the lecture
PHYSICS 244 NOTES

Lecture 29

Quantum Conduction
Introduction

So far, we have not given any way of computing τ, the relaxation time, or λ, the mean free path.  Indeed, classical mechanics offers no good way of doing this.  WE noe take a quantum view of conduction

Mean free path  

Let us first look the occupation in k-space when the field is applied.  The Fermi sphere is shifted rigidly in the direction of the field.  The magnitude of the shift is related to vd by p= ħ k = mv, so that the shift is.  

Δk = m vd /ħ.

[[DIAGRAM]]

The idea behind quantum conduction is that the electron is in a state ki for a length of time which on average is the relaxation time τ.  It then undergoes a transition to another state kf , and then the process is repeated.  The transitions are induced by scattering from impurities, sound waves, lattice imperfections, etc. – anything that represents a deviation from a perfect static crystal lattice.  The connection to the classical picture is this:  in the classical picture, we imagined the electron as a pinball, undergoing collisions with atoms after an average time τ; in the quantum picture, we imagine the electron as living for an average time τ in a stationary state, then making a transition to another stationary state.  The idea of a collision is replaced by the idea of a transition.  

[[DIAGRAM]]

Let us look at the scattering from sound waves.  The scattering is caused by the mean square deviation r2 of an atom jiggling about due to its thermal motion.   The mean free path is given by λ = 1/ π r2 natom and r2 by

Kr2/2 = kT/2 so r2 = kT / K.  K is the spring constant for the motion of the atoms.  It varies from one material to another (K is big if the material is hard),  but we have estimated its magnitude when talking about molecular vibrations, and values in solids are similar.

If we compute this at 300 K, we find that 

r2 = 10-4 nm2 = 10-22 m2, and so

λ = 1/natom π r2 = 1/ 3 × 1028 × 10-22m = .33 × 10-6 m, which is about the right value to give the observed conductivities of metal at 300 K, when the formula

ρ = m/ne2τ =  mvF /ne2λ is used.  Most importantly, this also says that ρ is proportional to T, since in this calculation λ is proportional to 1/T.  This is in very good agreement with observations of the resistance of metals at room temperatures. 

[[DIAGRAM]]

Heat conduction

Heat conduction coefficient or thermal conductivity κ is defined by

(1/A) dQ/dt = κ (dT/dz)      

Q is the heat.  

It is measured by putting one end of the wire at one temperature, and the other at a lower temperature, and measuring the heat flow.

[[DIAGRAM]]

The occupation changes in k-space are a little more complicated than for electrical conduction, since they depend on position in this case.

[[DIAGRAM]]

The basic flow equation is similar to that for the electrical conductivity:

(1/A) d(charge) /dt = σ (dV/dz).

The classical picture is also a little different, the idea being that the hotter electrons tend, on balance, to move toward the colder regions just becuse things tend to get randomized.

By a similar argument to the electrical conductivity, w e find (apart from a factor 4/π, which is very close to 1) that we only need to change the charge –e on the electron to its heat T and eV into kBT to get the answer.  Making these substitutions, we find that

σ = ne2τ/m

becomes

κ = (4/π)  n (kBT)2 τ/m.

There is a proportionality

κ/σT = (4/π) kB2 /e2 = L = 10-8 W-Ω/K2
where L is the Lorentz number, a fundamental constant.  This law, that κ is always proportional to σT, is very well obeyed in practice.  For example, at room temperature, κ is proportional to T2.

