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PHYSICS 244 NOTES

Lecture 19

Statistics of electron motion, part 2

Introduction

Our simplified model of electrons in a solid is an infinite square well in three dimensions.  We found that the number of states dN between energies E and E+dE was given by ge(E) dE, where ge(E) is the electronic density of states:

ge(E) = dN/dE =  (1/2π2) V (2m/ћ2)3/2 E1/2.

Ground state

In a many-particle system, the key question is:  how do the electrons occupy the states we have found?  

Note that the term “state” is unfortunately used in two senses:  The possible wavefunctions for one particle, and the total wavefunction for all the electrons of a many-electron system.  I will try to distinguish these two senses by speaking of a “configuration” of a many-particle system when there is a chance of confusion.

The lowest-energy configuration state of the system is the ground state.  We get it just the same way we did in atoms: we put the first electron into the lowest state, the next one into the next-lowest state, and so on until we have run out of electrons.    This will be the actual configuration of the system at zero temperature, since then any system is in its ground configuration, (or ground state). Let us call the energy of the last state that is filled EF.  EF is known as the Fermi energy.    

We can now get a relation between N and EF: 

N = ∫dN = ∫ge(E) dE = ∫ 0EF(1/2π2) V (2m/ћ2)3/2 E1/2 dE 


                        = (2/3) (1/2π2) V (2m/ћ2)3/2 EF3/2.
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So the Fermi energy is given by 

EF = (N/V)2/3 [(1/3π2) (2m/ћ2)3/2]-2/3
     = (ћ2/2m) n2/3 (3π2)2/3. 

Here n = N/V is the number density.  For a metal, n is very roughly 5×1028/cm3, or about 0.05 per cubic angstrom (10-10m), which gives very roughly EF of a few eV.  In a doped semiconductor, unlike a metal, we can control the density, and the electron density at room temperature is about equal to the impurity density, perhaps 1023/cm3 in practical devices.

We can also find the magnitude of the highest occupied k-vector, which is called kF, the Fermi wavevector.
kF = (2mEF/ћ2)1/2 = (3π2n)1/3, which is typically an angstrom or so in metals, and maybe 100 angstroms in doped semiconductors (where it is controlled by doping).

Fermi function

What about at finite temperatures?  Can we use the Boltzmann factor, that the probability of occupation of a quantum state is A exp(-E/kT) ?  The answer is clearly no.  A grows to be very big at low temperatures, but the Pauli exclusion principle says that the occupation of a state can only be 0 or 1.  So the Boltzmann distribution would violate this quantum principle.  It needs to be modified slightly.  The Boltzmann distribution can be written as

FB(E) = 1 / [(1/A) exp(E/kT)], where the normalization constant A depends on the total number and the temperature, as we saw before.  The modification is to add a +1 to the denominator, and the correct occupation function for electrons is the Fermi-Dirac distribution: 

fFD(E) = 1/ [((1/A)exp(E/kT) +1].

Since A and exp(E/kT)  are always positive, this is always less than 1, as required.  The normalization constant A is usually written in a strange way:

A = exp(μ/kT).  

The reason for this is that, defined in this way, μ is something called the chemical potential.  Those of you who have studied physical chemistry will recognize μ as the change in the free energy of a system when a single particle is added.  μ depends on temperature, but it is determined in the same way as any normalization constant, as we will see shortly.  Now we have 

fFD(E) = 1/ {[exp(E-μ)/kT] +1]}.

μ is determined from the equation

N = ∫0∞ dE ge(E) f(E,T,μ),

so it again depends on temperature and total number of particles.

The function f looks like a step function at zero temperature, as it must.  We see that μ=EF when T=0.  The step then broadens out so that it falls from 1 to 0 over an energy range of kT.  At temperatures much greater than EF/k, the function goes over to the Boltzmann distribution “classical behavior”.   Note, however, that EF/k is typically 104 K for a metal. 
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Specific heat

The total energy of the system is

Etot (T) =  ∫0∞dE E ge(E) f(E,T,μ).

At T=0, we have

Etot (T=0) = ∫0EF dE E ge(E) 

       = ∫ 0EF(1/2π2) V (2m/ћ2)3/2 E3/2 dE



= (2/5) (1/2π2) V (2m/ћ2)3/2 EF5/2
Etot (T)  is a function that has no simple expression, and it must be computed umerically.  For low T such that  T<<EF/k, however, we may say that a fraction kT/EF of the electrons have their energies changed by temperature, and the change is roughly kT.  So the change in energy from T=0 is proportional to T2/EF. 

Computing the proportionality constant is not easy so we just give the result: 

Etot (T) =  Etot (T=0) + (π2/4) Nk2T2/EF ,

and the specific heat is 

Cquantum = dE/dT = (π2/2) Nk2T/EF.

This is in contrast to the specific heat of a classical gas, which is 

Cclassical = 3k/2.

The Pauli exclusion principle suppresses the specific heat by a factor Cquantum/ Cclassical = (π2/3)(kT/EF), which is a very small number for a metal at room temperature.  This resolved a very important problem in the theory of metals in the early 20th century – another triumph for quantum mechanics!
