Note: All [DIAGRAMS] will be provided in the lecture
PHYSICS 244 NOTES

Lecture 14

The Hydrogen Atom, part 2
Introduction

Last lecture we examined the Schrödinger equation for the stationary states of the hydrogen atom, noting that we needed to think about all three spatial dimensions 

E ψ = (-ħ2/2μ) [∂2ψ/∂x2 + ∂2ψ/∂y2 +∂2ψ/∂z2 ] + V(x,y,z) ψ
and that the potential function was the usual electrostatic potential 

V(x,y,z) = -kZe2/r = -kZe2/ (x2+y2+z2)1/2, which is a function of the radial coordinate r only.  The conclusion was that the natural variables are the spherical coordinates r,θ,φ.   Today we draw the conclusions from these considerations.

Wavefunctions of the stationary states

The fact that there are three dimensions means that there are also three quantum numbers:

n = ‘the principal quantum number’, associated with R(r) 

l = ‘the angular momentum quantum number’, associated with f(θ)

m = ‘the azimuthal quantum number’ associated mainly with g (φ)

n can be thought of as being similar to the n that we had in the infinite square well.  The higher the n value, the more wiggles in the wavefunction as we move out from the nucleus.  l and m represent oscillations as we move around the nucleus.  Because of the periodic character of the angular wavefunctions g and f, the ranges of l and m are limited: 

n=1,2,3…

l = 0,1,2,   n-1

m = -l, -l+1,…0 … l-1,l

The energy depends only on n:

En = -R/n2, with E0 = ħ2/2ma02 = 13.6 eV

The example we gave in Lecture 13 corresponds to n=2, l=1, m=0.

The energy level diagram starts at -13.6 eV, which is the binding energy of the ground state n = 1, and continues with -3.4 eV, which is the binding energy of the first excited state, and so on.  

[[DIAGRAM]]

There are also states at positive energies.  They correspond to wavefunctions that are not bound to the nucleus: ionized states.

The notation for the states includes both n, the principal quantum number and l, the angular momentum quantum number.  Unfortunately, one doesn’t normally just say what l is.  Instead we have the spectroscopic notation:   

l  = 0    1    2    3    4  = angular momentum

      s    p    d    f     g   spectroscopic designation

      1    3    5    7    9   degeneracy

Hence a 1s state is n=1, l=0, etc.

The selection rule for transitions is that l must change by plus or minus one

Transitions to n-1 are higher in energy – they range from 10.2 to 13.6 eV (ionization limit)  Lyman (UV)

Transitions to the n=2 states are somewhat lower in energy

1.9 to 3.4 eV visible (ionization limit)

n=3 are in the IR

For example,  

n=2 to n=1

ΔE = ħω = -E0 /4 – (-E0 /1) = ¾ E0 = ¾ (13.6 eV) = 10.2 eV

ω = 10.2 eV × 1.6 × 10-19 J/eV / 1.05×10-43 J-s

    = 1.55 × 10 16 / s

f = ω / 2 π = 2.47 × 1015 Hz

and λ = c / f  = (3 × 108 m/s) / (2.47 × 1015 /s) = 1.2 × 10-7 m,

which is much larger than 10-10 m, which is the atomic diameter.

In general, electronic transitions in atoms give light that is about 1 μm = 10-6 m in wavelength.

Meaning of the quantum numbers

n is a measure of the kinetic energy – oscillations in the radial direction

(n-l is the number of zeros in the radial function R(r).)

n = 1,2,3… 

l is the quantum number for the total angular momentum L

Recall from classical mechanics that L = m v × r for any particle.

It is a constant of the motion in a central force field in classical mechanics.

L= mvr for circular motion

In QM, the total angular momentum is related to the angular momentum quantum number by

L = (l(l+1))1/2 ħ
l = 0,1, …, n-1

m is the azimuthal quantum number.  It is a measure of the z-component of the angular momentum

Lz = m ħ.

Lz < L or

m2 < l(l+1)

so that m = -l, -l+1 … l-1,l.

There is an additional quantum number, the spin, that represents an internal angular momentum for the particle.  It spins like a top.  This always has S=1/2 , which implies that ms = ½ or -1/2.  This implies an additional degeneracy of 2. Sz = +1/2 ħ or – ½ ħ.  We’ll talk about spin in more detail later on.

