Note: All [DIAGRAMS] will be provided in the lecture
PHYSICS 244 NOTES

Lecture 13

The Hydrogen Atom, part 1
Introduction

This will be our first example that is not an abstract, illustrative model problem – for the first time we will be able to directly compare the results to experimental data.  The H atom was the first problem solved by the Schrödinger equation.  In fact the equation was introduced in 1926 just in order to solve this problem.  It was known that the light coming from H atoms had energies given by the formula

En,m (light) = (1/n2-1/m2) × 13.6 eV, with  n,m = 1,2,3….

This strongly suggests, knowing what we do about energy levels and transitions between them that the energies of the bound stationary states in hydrogen satisfy

En = - 13.6 eV / n2.

Why?

The H atom is the simplest atom because it contains just a single positive charge and a single negative charge – a proton and an electron.  Other elements have more electrons, which, as we shall see, complicates the problem a lot.  Nevertheless, the H atom holds the key (or most of the keys) for understanding more complex many-electron atoms.  

Three dimensions

We must now use the three-dimensional Schrödinger equation to solve for the motion of the electron, that is Ψ(x,y,z,t) must satisfy the equation
iħ ∂Ψ/∂t = (-ħ2/2μ) [∂2Ψ/∂x2 + ∂2Ψ/∂y2 +∂2Ψ/∂z2 ] + V(x,y,z) Ψ,

where

| Ψ(x,y,z,t)|2 dx dy dz is the chance that the electron lies in a cubic box with sides dx, dy, and dz centered at the point (x,y,z) at the time t.

As usual ∫∫∫ | Ψ(x,y,z,t)|2 dx dy dz = 1, since the particle must be somewhere.

We use μ, the reduced mass, just as in classical mechanics.

μ = memp/(me+mp), where me is the mass of the electron and mp is the mass of the proton.  Since me << mp, we have μ ≈ me.

According to our now well-established procedure, we will solve for the stationary states:  Ψ(x,y,z,t) = exp(-iEt/ħ) ψ(x,y,z), with

E ψ = (-ħ2/2μ) [∂2ψ/∂x2 + ∂2ψ/∂y2 +∂2ψ/∂z2 ] + V(x,y,z) ψ
The potential energy that the electron feels is from the electrical attraction to the nucleus:

V(x,y,z) = -kZe2/r = -kZe2/ (x2+y2+z2)1/2.

It is usual to insert the factor of Z=1,2,3… for the charge.  Z=1 for H, but this will allow us to get the He+ ion for ‘free’ by setting Z=2.

If we draw the potential as a function of r, we see that the electron sits in a 3D ‘finite well’, and we expect that it will have some bound states as well as some unbound states.  From the harmonic oscillator solution we know that the higher the energy of the bound state, the more spread-out its wavefunction.

[[DIAGRAM]]  

The problem in solving the equation is the presence of the variable r.  It suggests, as in the problem of planetary motion in classical mechanics, that we change to spherical coordinates:

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ.

The partial derivatives can be computed by the chain rule and the 3D Schrödinger equation becomes

 E ψ(r,θ,φ) = (-ħ2/2μ) [(1/r2) ∂/∂r (r2 ∂ψ/∂r)  + 

(1/sin θ) ∂/∂θ (sin θ ∂ψ/∂θ) + (1/sin2θ) ∂2ψ/∂φ2 ] - kZe2/r  ψ.

We will not solve this equation in complete detail, but try instead to sketch the main features of the solution.

We let ψ(r,θ,φ) = R(r) f(θ) g(φ).  This is called separation of variables.

Note in the above equation that φ, unlike r and θ, appears only in a second derivative.  This is similar to the x – coordinate in the Schrödinger equation for a free particle.  This suggests that we try

g(φ) = exp(imφ).  Since we must have g(0) = g(2π), we must then have

m = integer.  Any integer from + to – infinity will do.

As we expect, there are many solutions, in fact an infinite number.

Now ∂2ψ/∂φ2 = R(r) f(θ) ∂2exp(imφ)/∂φ2 = -m2 R(r) f(θ) exp(imφ) = -m2 ψ.

Then the SWE reduces to

E R(r) f(θ)  = (-ħ2/2μ) [ f (1/r2) ∂/∂r (r2 ∂R/∂r)  + R

(1/sin θ) ∂/∂θ (sin θ ∂f/∂θ) – (m2/sin2θ) R f ] – (kZe2/r)  R f.

There are also an infinite number of solutions for f(θ).  Unfortunately, they are a little more complicated than those for φ, and the solutions for f(θ) depend on m.  

Here is just one example.  Take m=0 and let f(θ) = cos θ.

Then  (1/sin θ) ∂/∂θ (sin θ ∂f/∂θ) =

 (1/sin θ) ∂/∂θ (sin θ ∂ cos θ/∂θ) = (1/sin θ) ∂/∂θ (sin θ (-sinθ))

= - (1/sin θ) ∂/∂θ (sin2 θ)

= - 2 cos θ.  

The  Schrödinger equation then reduces to

E R(r) cos θ  = (-ħ2/2μ) [ cos θ (1/r2) ∂/∂r (r2 ∂R/∂r)  -2 R

cos θ ] – (kZe2/r)  R cosθ or

E R(r) = (-ħ2/2μ) [ (1/r2) ∂/∂r (r2 ∂R/∂r)  -2 R(r) ] – (kZe2/r)  R(r).

This is solved by 

R2(r) = C r exp(-2r/a0)

with a0 = ħ2/mkZe2 = 0.52× 10-10 m = ‘the Bohr radius’, for Z = 1.

So the complete wavefunction is

Ψ(r,θ,φ) = C r exp(-2r/a0) cos θ

and energy 

E = - 2ħ2/μa02  = -3.4 eV

a0 gives the natural size of all atoms.  Note that the formula involves ħ, so the atomic size comes from quantum theory and cannot be understood without it.  This is called the 2s wavefunction.

