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PHYSICS 244 NOTES

Lecture 12
Reflection and Transmission of Particles

Introduction

For electromagnetic waves, there is usually partial transmission and partial reflection at an interface between two media.  Think of a beam of light hitting a window.  Some goes through, but some bounces back.  Why should any of the light bounce back from the glass surface?  Glass is, after all, transparent.  The reason is that the wavelength of the light in the glass is different from the wavelength in air.  There is a mismatch (essentially an impedance mismatch), between the two media.  For the waves to match properly at the interface, there must be an incoming and an outgoing wave in the air, which add up to match with the outgoing wave in the glass.  The outgoing wave in the air is the reflected wave.

[[DIAGRAM]].

In quantum mechanics, since particles act as waves between measurements, we might expect something similar.  The way things work is that the wavefunction is partly transmitted and partly reflected at an interface.  When the measurement is done we have some chance of finding that the particle is moving back from the interface, and some probability that it goes through.

A potential step

To describe this using the Schrödinger equation, we need a potential V(x) that takes a jump of some kind.  Then the wave travels between a medium with low V to high V or vice versa.  Let us take a V that satisfies V=0 for x < 0, and V = V0 for x > 0.  

[[DIAGRAM]]  The math is actually very similar to what we had for the finite square well.  In a stationary state with energy E, we have

ψ = A exp(ikx), but there is a different k on the two sides:

kl = (2mE/ħ2)1/2 where x<0 and V = 0 and kr = [2m(E-V0)/ħ2]1/2 where x>0 and V = V0.  

(We won’t worry about the coefficient A for the moment).

There are now two very different cases.  E < V0 and E > V0.  

If E < V0 , then  kr is imaginary,

ψ = exp(-|kr|x) and the particle only penetrates a distance

of about 1/|kr| = [2m |E-V0| /ħ2]-1/2.  

If E > V0 , then kr is real and ψ = exp(ikrx):

the oscillations will be slower on the right when x>0, but the particle can still propagate, indeed to an infinite distance.  

So much for the stationary states.  

What we are most interested in is the behavior of wavepackets, since they represent (somewhat) localized particles.  So the experiment is to shoot particles at the partially permeable barrier at x = 0.

In a classical experiment, all particles would go up the hill and pass to the other side if E > V0.  In a quantum experiment, this is not the case.  A fraction R are reflected, and a fraction T are transmitted.  R+T=1 since one or the other must happen.  The outcome of a single experiment is not predictable, but if we do the experiment N times, and N >>1, we will get approximately R×N particles back and approximately T×N particles will get through.  

The formulas for R and T, which we won’t derive, (you should look at the book for that) are

R = (kl – kr)2 / (kl + kr)2 and

T = 2 kl kr / (kl + kr)2.
Note that R=0 when kl = kr, since then there is no mismatch.

Quantum tunneling

Now consider a square barrier that extends from x = 0 to x = L.  

[[DIAGRAM]]

Again, in classical mechanics, either E > V0 and you get over the barrier, or E < V0 and you don’t.  

In quantum theory, T is not zero even if E < V0.  If we continue with the hill analogy, there is not enough energy to get over the hill, but the particle gets to the other side anyway – it must therefore tunnel through.

If krL is >> 1, then the probability T is roughly proportional to exp(-2krL) as we might expect from the square of the wavefunction in a forbidden region.

Alpha decay

Quantum tunneling offers an explanation of radioactive alpha decay, a phenomenon impossible to explain in a classical fashion.  The alpha particle is trapped inside the nucleus.  We can think of it as a wavepacket in a well that is surrounded by a barrier.  If we take a one-dimensional model, this is just two barriers.  The particle shuttles back and forth between the two.  Each time it hits, it has some probability, however small, of escaping out.  But once it escapes, it is gone for good.  Then the nucleus has split into two, with an emission of alpha radiation.  Thus the probability of decay is a constant in any interval of time.  This leads to the exponential decay law for radioactivity  N(t) = N (t=0) exp (-t/t0) by the following reasoning:

N(δt) = N(t=0) (1-δt/t0)

N(2δt) = N(δt) (1 – δt/t0) = N(t=0) (1-δt/t0)2
At t = nδt, we have

N(t = nδt) =  N(t=0) (1-t/nt0)n, and if n is large, this is

N(t) = N (t=0) exp (-t/t0).  

Scanning tunneling microscopy

Another application of quantum tunneling is to microscopy.  The idea is this.  We make a very small, sharp electrode and position it over a flat surface of some object to be imaged.  We close the circuit between the electrode and the object.  Then the electrode is slowly moved over the surface, and the current is monitored as a function of the lateral position.  When the current is high, the surface is closer to the electrode and quantum tunneling is fast.  When the current is low, the surface is farther away and tunneling is slow.  
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This allows the imaging of actual atoms on a surface !

