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PHYSICS 244 NOTES

Lecture 10

Beyond stationary states 

Transition amplitudes

The calculation of average values is one of the ways to extract physical information from the wavefunction, but there is more in there.  Notice first of all that all of the average values we have calculated so far using stationary states are independent of time:

Ψn(x,t) = ψn(x) exp(-iEnt/ħ) and

<x> = ∫ Ψ*n(x,t) x  Ψn(x,t) dx

       = ∫ ψ*n(x) x  ψn(x) dx.

This time-independence property would clearly be the same if chose to calculate <p> or any other average.  It depends only on the cancellation of the time-dependence of Ψ and Ψ*. 

But now let us look at a wavefunction that is not a stationary state:

Ψ(x,t) = a  Ψn(x,t) + b  Ψm(x,t)

           = a ψn(x) exp(-iEnt/ħ) + b ψm(x) exp(-iEmt/ħ).

As long as Em ≠ En , this is not a stationary state, since it has more than one energy associated with it.  It can be prepared by putting the system into the initial state

 Ψ(x,0) = a  ψn(x) + b  ψm(x)

Because of the superposition principle, Ψ(x,t) is a perfectly good solution of the Schrödinger equation.

Now let us calculate 

<x> = ∫ Ψ*(x,t) x  Ψ(x,t) dx 

= ∫ [a  Ψn(x,t) + b  Ψm(x,t)]*  x  [a  Ψn(x,t) + b  Ψm(x,t)] dx

= |a|2 <x>m + |b|2 <x>n + 2 a b cos [(Em – En)t / ħ] <x>mn.

Here, I have assumed for simplicity that a, b, ψm , and ψn are all real.  Also, I have defined

<x>m =  ∫ ψn(x) x  ψn(x) dx.

<x>mn = ∫ ψm(x) x ψn(x) dx.

The particle oscillates back and forth between the two states with a beat frequency ωmn =   (Em – En) / ħ. 

We can now see why stationary states are called what they are.  In a stationary state <x> is independent of time, whereas in a non-stationary state it is not.  
The quantity <x>mn is called the transition matrix element.

Let us compute <x>12 = ∫ ψ*1(x) x ψ2(x) dx for the infinite square well:

<x>12  =  (2/L) ∫0L sin (πx/L) x  sin (2πx/L) dx

           =  (2/L) (L/π)2 ∫0π sin (u) u  sin (2u) du
           = (2L/π2) 2 ∫ sin2 (u) u cos(u) du

          = (4L/π2) { [π (sin3π/3) – 0] – (1/3) ∫ sin3 (u) du }

= - 16L/9 π2

Emission and Absorption

By applying external forces, we can induce the system to make transitions from one stationary state to another.  For example, we can shine light on the system at the frequency ωmn.  This can cause the system to absorb light and increase its energy by Em – En, assuming that Em > En.  This is called absorption of a photon.  It can also induce the change in the other direction, causing a decrease in energy of the system by Em – En.  This is called stimulated emission.  There is also a process called spontaneous emission, where the particle goes down from state n to state m with no applied field.  In an ordinary fluorescent bulb, spontaneous emission dominates, while in a laser, stimulated emission dominates.  The rate of transitions is governed by the size of the associated transition matrix element: if <x>12 is big, then the rate of transitions for 1 to2 and vice-versa is fast.

To find out at what energies the system can emit or absorb energy, we draw the energy level diagram.  The differences between energy levels Em – En determine the allowed frequencies through the equation Em – En = ħω.
[[DIAGRAM]]

Selection rules

Certain transitions may be forbidden to occur.  This can happen if

<x>mn =0 .  This is called a selection rule.  For example, let us look at <x>13.

<x>13 = (2/L) ∫0L sin (πx/L) x  sin (3πx/L) dx

          = (2/L) ∫0L sin (πx/L) (x-L/2)  sin (3πx/L) dx

              + (2/L) (L/2) ∫0L sin (πx/L)  sin (3πx/L) dx

          = 0.

The first integral vanishes because the integrand is odd about L/2.  The second integral vanishes because it is the product of different frequency functions.  This relation implies that the transition rate from 1 to 3 and vice versa will be very slow relative to 1 to 2 and vice versa.
