
Flasher_CPLD_Func Page 1 of 1

Pseudo-Code Defining the Interface Functions
 2/19/2003 N. Kitamura
 3/28/2003 (revision)

In the subsequent description, assume
“use work.flash_defs.all” for the symbol definitions.

DS2401, DS2502 Functions

“Master” refers to the 1-Wire Bus Master implemented as a
VHDL code. “Addr” in the pseudo-code is an offset address
relative to the base address.

Base address = addr_owm_command

“Slave” refers to a 1-Wire device connected to one of the
eight slave channels:
 DQ0 – DQ5 : DS2502 PROM for LED calibration data
 DQ6 : DS2401 Flasher Board ID

Select_Slave_Channel
In order to access a 1-Wire device, DOMMB must first select
one of the 1-Wire slaves by writing a word to
addr_owm_slvsel. Only one slave channel may be selected at
any given time.

Data word Selected channel

 0000 0000 (none)
 0000 0001 0
 0000 0010 1
 . . .
 . . .
 . . .
 1000 0000 7

Initialize_Master
Each time a different slave channel is selected, master
must be initialized by the following sequence.
1. Reset
2. Set up clock divider (Addr=0x04, Data=0x0D)
3. Set up Interrupt Enable Register (Addr=0x03, Data=0x17)

Flasher_CPLD_Func Page 2 of 2

 EPD=1 Enable Presence Detect Interrupt
 IAS=1 Set INTR to be active high
 EBTE=1 Enable Transmit Buffer Empty Interrupt

ETMT=0 Disable Transmit Shift Register Empty
Interrupt

 ERBF=1 Enbble Receive Buffer Full Interrupt
 ESINT=0 Disable Slave Interrupt
 ENBSY=0 Disable Not Busy Interrupt
 DQOE=0 Disable DQ Output Enable

Send_Reset_Pulse
1. Master Tx "reset" (Addr=0x00, Data=0x01)
2. Wait for "presence" pulse
 Wait for INTR=1, then check to see if PD=1.
 To do so, read a byte at addr=0x02, and check Data[0]

Initializing_Slave
1. Send Reset Pulse
2. Master Tx "skip ROM" commd (Addr=0x00, Data=0xCC)
3. Wait for INTR=1, then check for TBE=1 (Addr=0x02,
Data[2]) <--necessary???

Read_Byte
1. Addr=0x01, Data=0xFF, nWR <= '0' (Must write 0xFF first
in order to read)
2. Wait for INTR=1, then check to see if TBE=1 (Data[2] at
addr=0x02)
3. Addr=0x01, nRD <= '0', Data <= (data)

Read_ROM
1. Initizlize_Slave
2. Master Tx "read memory" command followed by address
bytes
 2a. Addr=0x00, Data=0xF0, nWR <='0'
 2b. Addr=0x01, Data <= Address byte1, nWR <= '0'
 2c. Addr=0x01, Data <= Address byte2, nWR <= '0'
3. Read Byte Data <= CRC
4. Check CRC
5. Master "issues read time slots"
6. Read Byte (as many times as necessary)
7. Send Reset Pulse

Flasher_CPLD_Func Page 3 of 3

Read_Status
This is the same as Read_ROM except for the command byte.
1. Initialize_Slave
2. Master Tx "read status" command followed by address
bytes
 2a. Addr=0x00, Data=0xAA, nWR <='0'
 2b. Addr=0x01, Data <= Address byte1, nWR <= '0'
 2c. Addr=0x01, Data <= Address byte2, nWR <= '0'
3. Read Byte Data <= CRC
4. Check CRC
5. Master "issues read time slots"
6. Read Byte (as many times as necessary)
7. Send Reset Pulse

Write_ROM
1. Initialize Slave
2. Master Tx "Write ROM" command followed by two address
bytes and a data byte
 2a. Addr=0x00, Data=0x0F, nWR <='0'
 2b. Addr=0x01, Data <= Address byte1, nWR <= '0'
 2c. Addr=0x01, Data <= Address byte2, nWR <= '0'
 2d. Addr=0x01, Data <= data byte, nWR <= '0'
3. Read Byte Data <= CRC
4. Check CRC
5. Send a programming pulse (12V)
6. Read Byte
7. Verify byte is correct
8. if write more bytes, goto (2d)
9. Send Reset Pulse

Write_Status
Same as Write_ROM except for the command byte
1. Initialize Slave
2. Master Tx "Write status" command followed by two address
bytes and a data byte
 2a. Addr=0x00, Data=0x55, nWR <='0'
 2b. Addr=0x01, Data <= Address byte1, nWR <= '0'
 2c. Addr=0x01, Data <= Address byte2, nWR <= '0'
 2d. Addr=0x01, Data <= status byte, nWR <= '0'
3. Read Byte Data <= CRC
4. Check CRC
5. Send a programming pulse (12V)
6. Read Byte
7. Verify byte is correct
8. if write more bytes, goto (2d)
9. Send Reset Pulse

Flasher_CPLD_Func Page 4 of 4

Read_ID
1. Send Reset Pulse
2. Addr=0x00, Data=0x33, nWR <= '0'
3. Read Byte (Familiy code)
4. Read Byte (6 times)
5. Read Byte (CRC)

SPI Functions

Up to eight(8) SPI devices are supported:
 nCS0..nCS5 : DAC channels
 nCS6..nCS7 : (no device assignment)

SPI_Select_Active_Channel
DOMMB writes a word to addr_spi_active_list. SPI channels
whose corresponding bit location is a 1 in the word are
selected.

SPI_Mode_Start
When DOMMB writes 0xFF to addr_spi_operate, the “SPI_mode”
is started. In SPI_mode, nWR and data(0..2) are used for a
special function:

 Signal name Function

 nWR SCLK
 data(0) MOSI
 data(1) MISO
 data(2) nCS

When nCS goes low, all the chip-select lines corresponding
to an active SPI channel also go low.

SPI_Mode_End
When DOMMB writes 0x00 to addr_spi_operate, the SPI_mode is
terminated.

Adjustable Trigger Delay
Each one of the six LED modules, LED_module0..LED_module5,
has an adjustable trigger delay device external to the
CPLD. The CPLD generates a 3-bit code value and a 1-bit
enable signal for each module.

Flasher_CPLD_Func Page 5 of 5

DEL_select_module
DOMMB writes a word specifying which LED module is to be
enabled to addr_del_ena.

DEL_adjust_module_01
DOMMB writes a word to address addr_del_dat0. Bits 0..2
are for LED_module0, bits 3..5 are for LED_module1.

DEL_adjust_module_23
DOMMB writes a word to address addr_del_dat1. Bits 0..2
are for LED_module2, bits 3..5 are for LED_module3.

DEL_adjust_module_45
DOMMB writes a word to address addr_del_dat2. Bits 0..2
are for LED_module4, bits 3..5 are for LED_module5.

