Plan of Lectures

- **I.** Standard Neutrino Properties and Mass Terms (Beyond Standard)
- **II.** Effects of ν Mass: Neutrino Oscillations (Vacuum)
- **III.** Matter Effects in Neutrino Oscillations
- **IV.** The Emerging Picture and Some Lessons

Concha Gonzalez-Garcia

Summary I+II+III

- In the SM: $\leftrightarrow m_{\nu} \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos

- In the SM: $\leftrightarrow m_{\nu} \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- $m_{\nu} \neq 0$ \rightarrow Need to extend SM to add m_{ν}
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
 - Always Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$

- In the SM: $\leftrightarrow m_{\nu} \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- $m_{\nu} \neq 0$ \rightarrow Need to extend SM to add m_{ν}
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$

- Always Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$

- Neutrino masses and mixing \Rightarrow Flavour oscillations
- ν traveling through matter \Rightarrow Modification of oscillation pattern

- In the SM: $\leftrightarrow m_{\nu} \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- $m_{\nu} \neq 0$ \rightarrow Need to extend SM to add m_{ν}
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
 - Always Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$
- Neutrino masses and mixing \Rightarrow Flavour oscillations
- ν traveling through matter \Rightarrow Modification of oscillation pattern
- Atmospheric, K2K and MINOS (+ negative SBL searches)

 $\Rightarrow \nu_{\mu} \rightarrow \nu_{\tau}$ with $\Delta m^2 \sim 2 \times 10^{-3} \text{ eV}^2$ and $\tan^2 \theta \sim 1$

• Solar and KamLAND

 $\Rightarrow \nu_e \rightarrow \nu_\mu, \nu_\tau$ with $\Delta m^2 \sim 8 \times 10^{-5} \text{ eV}^2$ and $\tan^2 \theta \sim 0.4$

- In the SM: $\leftrightarrow m_{\nu} \equiv 0$
 - neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
 - No distinction between Majorana or Dirac Neutrinos
- $m_{\nu} \neq 0$ \rightarrow Need to extend SM to add m_{ν}
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$

- Always Lepton Mixing \equiv breaking of $L_e \times L_\mu \times L_\tau$

- Neutrino masses and mixing \Rightarrow Flavour oscillations
- ν traveling through matter \Rightarrow Modification of oscillation pattern
- Atmospheric, K2K and MINOS (+ negative SBL searches)

 $\Rightarrow \nu_{\mu} \rightarrow \nu_{\tau}$ with $\Delta m^2 \sim 2 \times 10^{-3} \text{ eV}^2$ and $\tan^2 \theta \sim 1$

• Solar and KamLAND

 $\Rightarrow \nu_e \rightarrow \nu_\mu, \nu_\tau$ with $\Delta m^2 \sim 8 \times 10^{-5} \text{ eV}^2$ and $\tan^2 \theta \sim 0.4$

• Can we fit all toegether? What can we learn from all this? Answer: Today

Plan of Lecture IV

Emerging Picture and Some Lessons

 3ν Oscillations

Some Lessons:

The Need of New Physics

The Possibility of Leptogenesis

- We have learned:
 - * Atmospheric ν_{μ} disappear (> 15 σ) most likely to ν_{τ}
 - * K2K: accelerator ν_{μ} disappear at $L \sim 250$ Km with *E*-distortion (~ 2.5–4 σ)
 - * MINOS: accelerator ν_{μ} disappear at $L \sim 735$ Km with E-distortion ($\sim 5\sigma$)
 - * Solar ν_e convert to ν_μ or ν_τ (> 7 σ)
 - * KamLAND: reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km with *E*-distortion ($\gtrsim 3\sigma$ CL)
 - * LSND found evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ but it is not confirmed

- We have learned:
 - * Atmospheric ν_{μ} disappear (> 15 σ) most likely to ν_{τ}
 - * K2K: accelerator ν_{μ} disappear at $L \sim 250$ Km with *E*-distortion (~ 2.5–4 σ)
 - * MINOS: accelerator ν_{μ} disappear at $L \sim 735$ Km with E-distortion ($\sim 5\sigma$)
 - * Solar ν_e convert to ν_μ or ν_τ (> 7 σ)
 - * KamLAND: reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km with *E*-distortion ($\gtrsim 3\sigma$ CL)
 - * LSND found evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ but it is not confirmed

All this implies that neutrinos are massive

- We have learned:
 - * Atmospheric ν_{μ} disappear (> 15 σ) most likely to ν_{τ}
 - * K2K: accelerator ν_{μ} disappear at $L \sim 250$ Km with *E*-distortion (~ 2.5–4 σ)
 - * MINOS: accelerator ν_{μ} disappear at $L \sim 735$ Km with E-distortion ($\sim 5\sigma$)
 - * Solar ν_e convert to ν_μ or ν_τ (> 7 σ)
 - * KamLAND: reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km with *E*-distortion ($\gtrsim 3\sigma$ CL)
 - * LSND found evidence for $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ but it is not confirmed

All this implies that neutrinos are massive

- We have important information (mostly constraints) from:
 - * The line shape of the Z: $N_{\text{weak}} = 3$
 - * Limits from Short Distance Oscillation Searches at Reactor and Accelerators
 - * Direct mass measurements: ${}^{3}H \rightarrow {}^{3}He + e^{-} + \bar{\nu}_{e}$ and ν -less $\beta\beta$ decay
 - * From Astrophysics and Cosmology: BBN, CMBR, LSS ...

Solar+Atmospheric+Reactor+LBL 3 ν **Oscillations**

U: 3 angles, 1 CP-phase + (2 Majorana phases)

$$\begin{pmatrix} 0 & 0 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

 2ν oscillation analysis $\Rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \ll \Delta M_{atm}^2 \simeq \pm \Delta m_{32}^2 \simeq \pm \Delta m_{31}^2$

Solar+Atmospheric+Reactor+LBL 3 ν **Oscillations**

U: 3 angles, 1 CP-phase + (2 Majorana phases)

$$\begin{pmatrix} 0 & 0 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

0

 2ν oscillation analysis $\Rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \ll \Delta M_{atm}^2 \simeq \pm \Delta m_{32}^2 \simeq \pm \Delta m_{31}^2$ Generic 3ν mixing effects:

- Effects due to θ_{13}
- Difference between Inverted and Normal
- Interference of two wavelength oscillations
- CP violation due to phase δ

3– ν Neutrino Oscillations

• In general one has to solve:

$$i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$$

$$H = U \cdot H_0^d \cdot U^\dagger + V$$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

3– ν Neutrino Oscillations

• In general one has to solve:

$$i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$$

$$H = U \cdot H_0^d \cdot U^{\dagger} + V$$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

- Hierarchical approximation: $\Delta m_{21}^2 \ll \Delta m_{31}^2 \sim \Delta m_{32}^2$
- * For $\theta_{13} = 0$ solar and atmospheric oscillations decouple \Rightarrow Normal \equiv Inverted
 - Solar and KamLAND $\rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \quad \theta_{12} = \theta_{\odot}$
 - Atmospheric and LBL $\rightarrow \Delta m_{31}^2 = \Delta M_{atm}^2$ $\theta_{23} = \theta_{atm}$

3– ν Neutrino Oscillations

• In general one has to solve:

$$i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$$

$$H = U \cdot H_0^d \cdot U^{\dagger} + V$$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

• Hierarchical approximation: $\Delta m_{21}^2 \ll \Delta m_{31}^2 \sim \Delta m_{32}^2$

* For $\theta_{13} = 0$ solar and atmospheric oscillations decouple \Rightarrow Normal \equiv Inverted

- Solar and KamLAND $\rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \quad \theta_{12} = \theta_{\odot}$
- Atmospheric and LBL $\rightarrow \Delta m_{31}^2 = \Delta M_{atm}^2$ $\theta_{23} = \theta_{atm}$

* For $\theta_{13} \neq 0$

- <u>Solar and KamLAND</u>: $P_{ee}^{3\nu} = c_{13}^4 P_{ee}^{2\nu} (\Delta m_{12}^2, \theta_{12}) + s_{13}^4$

3– ν Neutrino Oscillations

• In general one has to solve:

$$i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$$

$$H = U \cdot H_0^d \cdot U^{\dagger} + V$$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

• Hierarchical approximation: $\Delta m_{21}^2 \ll \Delta m_{31}^2 \sim \Delta m_{32}^2$

* For $\theta_{13} = 0$ solar and atmospheric oscillations decouple \Rightarrow Normal \equiv Inverted

- Solar and KamLAND $\rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \quad \theta_{12} = \theta_{\odot}$
- Atmospheric and LBL $\rightarrow \Delta m_{31}^2 = \Delta M_{atm}^2$ $\theta_{23} = \theta_{atm}$
- * For $\theta_{13} \neq 0$

- <u>Solar and KamLAND</u>: $P_{ee}^{3\nu} = c_{13}^4 P_{ee}^{2\nu} (\Delta m_{12}^2, \theta_{12}) + s_{13}^4$

-CHOOZ:
$$P_{ee}^{CH} \simeq 1 - 4c_{13}^2 s_{13}^2 \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

3– ν Neutrino Oscillations

• In general one has to solve:

$$i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$$

$$H = U \cdot H_0^d \cdot U^\dagger + V$$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

• Hierarchical approximation: $\Delta m_{21}^2 \ll \Delta m_{31}^2 \sim \Delta m_{32}^2$

* For $\theta_{13} = 0$ solar and atmospheric oscillations decouple \Rightarrow Normal \equiv Inverted

- Solar and KamLAND $\rightarrow \Delta m_{21}^2 = \Delta m_{\odot}^2 \quad \theta_{12} = \theta_{\odot}$
- Atmospheric and LBL $\rightarrow \Delta m_{31}^2 = \Delta M_{atm}^2$ $\theta_{23} = \theta_{atm}$
- * For $\theta_{13} \neq 0$

- Solar and KamLAND:
$$P_{ee}^{3\nu} = c_{13}^4 P_{ee}^{2\nu} (\Delta m_{12}^2, \theta_{12}) + s_{13}^4$$

$$-\underline{\text{CHOOZ}}: P_{ee}^{CH} \simeq 1 - 4c_{13}^2 s_{13}^2 \sin^2\left(\frac{\Delta m_{31}^2 L}{4E}\right)$$

- <u>K2K+MINOS</u> Probabilities Independent of θ_{12} , Δm_{21}^2 4

3– ν **Atmospheric Neutrino Oscillation: Effect of** θ_{13}

• In general one has to solve:

$$i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$$

$$H = U \cdot H_0^d \cdot U^\dagger + V$$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

3– ν **Atmospheric Neutrino Oscillation: Effect of** θ_{13}

• In general one has to solve: $i\frac{d\vec{\nu}}{dt} = H \vec{\nu}$ $H = U \cdot H_0^d \cdot U^\dagger + V$ $H_0^d = \frac{1}{2E_u} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right)$ $V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$

• Hierarchical approximation: $\Delta m_{21}^2 \ll \Delta m_{31}^2 \sim \Delta m_{32}^2 \Rightarrow \text{neglect } \Delta m_{21}^2 \text{ in ATM}$

$$P_{ee} = 1 - 4s_{13,m}^2 c_{13,m}^2 S_{31}$$

$$P_{\mu\mu} = 1 - 4s_{13,m}^2 c_{13,m}^2 s_{23}^2 S_{31} - 4s_{13,m}^2 s_{23}^2 c_{23}^2 S_{21} - 4c_{13,m}^2 s_{23}^2 c_{23}^2 S_{32}$$

$$P_{e\mu} = 4s_{13,m}^2 c_{13,m}^2 s_{23}^2 S_{31}$$

$$S_{ij} = \sin^2 \left(\frac{\Delta \mu_{ij}^2}{4E_{\nu}}L\right)$$

$$\Delta \mu_{21}^2 = \frac{\Delta m_{32}^2}{2} \left(\frac{\sin 2\theta_{13}}{\sin 2\theta_{13,m}} - 1\right) - E_{\nu} V_e$$

$$\Delta \mu_{32}^2 = \frac{\Delta m_{32}^2}{2} \left(\frac{\sin 2\theta_{13}}{\sin 2\theta_{13,m}} + 1\right) + E_{\nu} V_e$$

$$\Delta \mu_{31}^2 = \Delta m_{32}^2 \frac{\sin 2\theta_{13}}{\sin 2\theta_{13,m}}$$

$$\sin 2\theta_{13,m} = \frac{\sin 2\theta_{13}}{\sqrt{(\cos 2\theta_{13} \mp \frac{2E_{\nu}V_e}{\Delta m_{31}^2})^2 + \sin^2 2\theta_{13}}}$$

Concha Gonzalez-Garcia

3– ν Atmospheric Neutrino Oscillation: Effect of θ_{13}

Ahkmedov, Dighe, Lipari, Smirnov 99; Petcov, Maris 98; Palomares, Petcov, 03

 $-\cdot - \cdot s_{13}^2 = 0.04, s_{23}^2 = 0.65, \Delta m_{21}^2 = 0$

s²₁₃=0.04, s²₂₃=0.35, Δm²₂₁=0
 s²₁₃=0.04, s²₂₃=0.65, Δm²₂₁=0

Concha Gonzalez-Garcia

3– ν Atmospheric Neutrino Oscillation: Effect of θ_{13}

Ahkmedov, Dighe, Lipari, Smirnov 99; Petcov, Maris 98; Palomares, Petcov, 03

$$\frac{N_e}{N_{e0}} - 1 = \overline{P_{e\mu}}\overline{r}(s_{23}^2 - \frac{1}{\overline{r}})$$

$$\overline{r} = \frac{N_{\mu0}}{N_{e0}}$$

$$P_{e\mu} = 4s_{13,m}^2 c_{13,m}^2 \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \frac{\sin 2\theta_{13}}{\sin 2\theta_{13,m}}\right)$$

$$\sin 2\theta_{13,m} = \frac{\sin 2\theta_{13}}{\sqrt{(\cos 2\theta_{13} \mp \frac{2E_{\nu}V_e}{\Delta m_{31}^2})^2 + \sin^2 2\theta_{13}}}$$
Multi-GeV : Enhancement due to Matter
Larger Effect in Normal

Possible Sensitivity to Mass Ordering

Concha Gonzalez-Garcia

3– ν Atmospheric Neutrino Oscillation: Effect of θ_{13}

Ahkmedov, Dighe, Lipari, Smirnov 99; Petcov, Maris 98; Palomares, Petcov, 03

$$\frac{N_e}{N_{e0}} - 1 = \overline{P_{e\mu}} \overline{r} (s_{23}^2 - \frac{1}{\overline{r}})$$
$$\overline{r} = \frac{N_{\mu 0}}{N_{e0}}$$
$$P_{e\mu} = 4s_{13,m}^2 c_{13,m}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \frac{\sin 2\theta_{13}}{\sin 2\theta_{13,m}}\right)$$
$$\ln 2\theta_{13,m} = \frac{\sin 2\theta_{13}}{\sqrt{(\cos 2\theta_{13} \mp \frac{2E_{\nu}V_e}{\Delta m_{31}^2})^2 + \sin^2 2\theta_{13}}}$$

 Multi-GeV : Enhancement due to Matter Larger Effect in Normal Possible Sensitivity to Mass Ordering

No Oscillations $s_{13}^2=0.00, s_{23}^2=0.35, \Delta m_{21}^2=0$ $s_{13}^2=0.04, s_{23}^2=0.35, \Delta m_{21}^2=0$ $s_{13}^2=0.04, s_{23}^2=0.65, \Delta m_{21}^2=0$

• Sub-GeV: Vacuum Osc: Smaller Effect

$$r \simeq 2 \Rightarrow \begin{array}{c} \theta_{23} < \frac{\pi}{4} \Rightarrow s_{23}^2 < \frac{1}{2} \Rightarrow N_e(\theta_{13}) < N_{e0} \\ \theta_{23} > \frac{\pi}{4} \Rightarrow s_{23}^2 > \frac{1}{2} \Rightarrow N_e(\theta_{13}) > N_{e0} \end{array}$$

Concha Gonzalez-Garcia

Δm^2_{21} effects in ATM Data

Smirnov, Peres 99,01; Fogli, Lisi, Marrone 01; MC G-G, Maltoni 02; MCG-G, Maltoni, Smirnov hep-ph/0408170

• In general one has to solve:

 $i\frac{d\vec{\nu}}{dt} = H\,\vec{\nu}$

 $H = U \cdot H_0^d \cdot U^\dagger + V$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

Concha Gonzalez-Garcia

Δm^2_{21} effects in ATM Data

Smirnov, Peres 99,01; Fogli, Lisi, Marrone 01; MC G-G, Maltoni 02; MCG-G, Maltoni, Smirnov hep-ph/0408170

• In general one has to solve: $i\frac{d\vec{\nu}}{dt} = H \vec{\nu}$ $H = U \cdot H_0^d \cdot U^{\dagger} + V$

$$H_0^d = \frac{1}{2E_{\nu}} \operatorname{diag}\left(-\Delta m_{21}^2, 0, \Delta m_{32}^2\right) \qquad V = \operatorname{diag}\left(\pm\sqrt{2}G_F N_e, 0, 0\right)$$

• Neglecting θ_{13} :

$$P_{ee} = 1 - P_{e2}$$

$$P_{e\mu} = c_{23}^2 P_{e2}$$

$$P_{\mu\mu} = 1 - c_{23}^4 P_{e2} - 2s_{23}^2 c_{23}^2 \left[1 - \sqrt{1 - P_{e2}} \cos\phi\right]$$

$$P_{e2} = \sin^2 2\theta_{12,m} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}} \frac{\sin 2\theta_{12}}{\sin 2\theta_{12,m}}\right)$$

$$\sin 2\theta_{12,m} = \frac{\sin 2\theta_{12}}{\sqrt{(\cos 2\theta_{12} \mp \frac{2E_{\nu}V_e}{\Delta m_{21}^2})^2 + \sin^2 2\theta_{12}}}$$

$$\phi \approx (\Delta m_{31}^2 + s_{12}^2 \Delta m_{21}^2) \frac{L}{2E_{\nu}}$$

Δm^2_{21} effects in ATM Data

Concha Gonzalez-Garcia

Δm^2_{21} effects in ATM Data

Concha Gonzalez-Garcia

Concha Gonzalez-Garcia

Beyond Hierarchical: Effect $\theta_{13} \times \Delta m_{21}^2$ in ATM

Smirnov, Peres 01,03, MC G-G, Maltoni 02

For sub-GeV energies

$$\frac{N_e}{N_e^0} - 1 \simeq \overline{P_{e2}}\overline{r}(c_{23}^2 - \frac{1}{\overline{r}}) + 2\tilde{s}_{13}^2\overline{r}(s_{23}^2 - \frac{1}{\overline{r}}) - \overline{r}\tilde{s}_{13}\tilde{c}_{13}^2\sin 2\theta_{23}(\cos\delta_{CP}\overline{R_2} - \sin\delta_{CP}\overline{I_2})$$

$$\tilde{\theta}_{13} \approx \theta_{13} \left(1 + \frac{2E_{\nu}V_e}{\Delta m_{31}^2} \right) \qquad \qquad \phi \approx \left(\Delta m_{31}^2 + s_{12}^2 \,\Delta m_{21}^2 \right) \frac{L}{2E_{\nu}}$$

Physics

Global Analysis: Three Neutrino Oscillations

M.C. G-G, M.Maltoni, ArXiV/0704.1800

z-Garcia

Global Analysis: Three Neutrino Oscillations

The derived ranges:

 $\Delta m_{21}^2 = 7.7 + 0.22_{-0.21} + 0.67_{-0.61} \times 10^{-5} \text{ eV}^2 \quad \left| \Delta m_{31}^2 \right| = 2.37 \pm 0.17 \,(0.46) \times 10^{-3} \text{ eV}^2$

	$(0.79 \rightarrow 0.86)$	0.50 ightarrow 0.61	0.00 ightarrow 0.20
$ U_{LEP} _{3\sigma} =$	$0.25 \rightarrow 0.53$	$0.47 \rightarrow 0.73$	$0.56 \rightarrow 0.79$
	$0.21 \rightarrow 0.51$	$0.42 \rightarrow 0.69$	$0.61 \rightarrow 0.83$

Global Analysis: Three Neutrino Oscillations

The derived ranges:

 $\Delta m_{21}^2 = 7.7 + 0.22_{-0.21} + 0.67_{-0.61} \times 10^{-5} \text{ eV}^2 \quad \left| \Delta m_{31}^2 \right| = 2.37 \pm 0.17 \,(0.46) \times 10^{-3} \text{ eV}^2$

	$(0.79 \rightarrow 0.86)$	0.50 ightarrow 0.61	0.00 ightarrow 0.20 ightarrow
$ U_{LEP} _{3\sigma} =$	$0.25 \rightarrow 0.53$	0.47 ightarrow 0.73	0.56 ightarrow 0.79
	$0.21 \rightarrow 0.51$	0.42 ightarrow 0.69	$0.61 \rightarrow 0.83 /$

with structure

$$|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{matrix} \lambda \sim 0.2 \\ \epsilon \lesssim 0.2 \end{cases}$$

Global Analysis: Three Neutrino Oscillations

The derived ranges:

 $\Delta m_{21}^2 = 7.7 + 0.22_{-0.21} + 0.67_{-0.61} \times 10^{-5} \text{ eV}^2 \quad \left| \Delta m_{31}^2 \right| = 2.37 \pm 0.17 \,(0.46) \times 10^{-3} \text{ eV}^2$

	$(0.79 \rightarrow 0.86)$	0.50 ightarrow 0.61	0.00 ightarrow 0.20 ightarrow
$ U_{LEP} _{3\sigma} =$	0.25 ightarrow 0.53	$0.47 \rightarrow 0.73$	0.56 ightarrow 0.79
	0.21 ightarrow 0.51	$0.42 \rightarrow 0.69$	$0.61 \rightarrow 0.83 /$

with structure

$$|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{matrix} \lambda \sim 0.2 \\ \epsilon \lesssim 0.2 \end{cases}$$

$$|S| |U_{\rm CKM}| \simeq \begin{pmatrix} 1 & \mathcal{O}(\lambda) & \mathcal{O}(\lambda^3) \\ \mathcal{O}(\lambda) & 1 & \mathcal{O}(\lambda^2) \\ \mathcal{O}(\lambda^3) & \mathcal{O}(\lambda^2) & 1 \end{pmatrix} \qquad \lambda \sim 0.2$$

We still ignore:

Open Questions

(1) Is θ₁₃ ≠ 0? How small?
(2) Is θ₂₃ = π/4? If not, is it > or <?
(3) Is there CP violation in the leptons (is δ ≠ 0, π)?
(4) What is the ordering of the neutrino states?
(5) Are neutrino masses:

hierarchical: m_i - m_j ~ m_i + m_j?
degenerated: m_i - m_j ≪ m_i + m_j?

(6) Dirac or Majorana?

To answer (1)–(4):Proposed new generation ν osc experiments:

- Medium Baseline Reactor Experiment: Double-Chooz, Daya Bay

– Conventional (=from π decay) Superbeams: *T2K*, *Nova* (?)

– ν -factory: clean ν beam from μ decay

 $-\nu_e \text{ or } \bar{\nu}_e$ beam from nuclear β decay (β beam)

Some Lessons: New Physics

Some Lessons: New Physics

A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R$ (this is not $SU(2)_L$ gauge invariant)

Some Lessons: New Physics

A fermion mass can be seen as at a Left-Right transition

(this is not $SU(2)_L$ gauge invariant) $m_f \overline{f_L} f_R$

If the SM is the fundamental theory:

- All terms in lagrangian (including masses) must be $\begin{cases} \text{gauge invariant} \\ \text{renormalizable (dim <math>\leq 4$)} \end{cases}
A fermion mass can be seen as at a Left-Right transition

(this is not $SU(2)_L$ gauge invariant) $m_f \overline{f_L} f_R$

If the SM is the fundamental theory:

- All terms in lagrangian (including masses) must be $\begin{cases} \text{gauge invariant} \\ \text{renormalizable (dim <math>\leq 4$)} \end{cases}

– A gauge invariant fermion mass is generated by interaction with the Higgs field $\lambda_f \overline{f_L} \phi f_R \rightarrow m_f = \lambda_f v$

 $(v \equiv \text{Higgs vacuum expectation value} \sim 250 \text{ GeV})$

A fermion mass can be seen as at a Left-Right transition

(this is not $SU(2)_L$ gauge invariant) $m_f \overline{f_L} f_R$

If the SM is the fundamental theory:

- All terms in lagrangian (including masses) must be $\begin{cases} gauge invariant renormalizable (dim \le 4) \end{cases}$

– A gauge invariant fermion mass is generated by interaction with the Higgs field $\lambda_f \overline{f_L} \phi f_R \rightarrow m_f = \lambda_f v$

 $(v \equiv \text{Higgs vacuum expectation value} \sim 250 \text{ GeV})$

- But there are no right-handed neutrinos
 - \Rightarrow No renormalizable gauge-invariant operator for tree level ν mass

A fermion mass can be seen as at a Left-Right transition

(this is not $SU(2)_L$ gauge invariant) $m_f \overline{f_L} f_R$

If the SM is the fundamental theory:

f the SM is the tundamental uncory. – All terms in lagrangian (including masses) must be $\begin{cases} gauge invariant renormalizable (dim \le 4) \end{cases}$

– A gauge invariant fermion mass is generated by interaction with the Higgs field $\lambda_f \overline{f_L} \phi f_R \rightarrow m_f = \lambda_f v$

($v \equiv$ Higgs vacuum expectation value ~ 250 GeV)

- But there are no right-handed neutrinos
 - \Rightarrow No renormalizable gauge-invariant operator for tree level ν mass
- SM gauge invariance also implies the accidental symmetry

 $G_{\rm SM}^{\rm global} = U(1)_{\rm B} \times U(1)_{L_e} \times U(1)_{L_u} \times U(1)_{L_\tau} \Rightarrow m_\nu = 0$ to all orders

A fermion mass can be seen as at a Left-Right transition

(this is not $SU(2)_L$ gauge invariant) $m_f \overline{f_L} f_R$

If the SM is the fundamental theory:

- All terms in lagrangian (including masses) must be $\begin{cases} gauge invariant renormalizable (dim \le 4) \end{cases}$

- A gauge invariant fermion mass is generated by interaction with the Higgs field $\lambda_f \overline{f_L} \phi f_R \rightarrow m_f = \lambda_f v$

 $(v \equiv \text{Higgs vacuum expectation value} \sim 250 \text{ GeV})$

- But there are no right-handed neutrinos
 - \Rightarrow No renormalizable gauge-invariant operator for tree level ν mass
- SM gauge invariance also implies the accidental symmetry $G_{\rm SM}^{\rm global} = U(1)_{\rm B} \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \Rightarrow m_{\nu} = 0$ to all orders

Thus the most striking implication of ν masses:

There is New Physics Beyond the SM

A fermion mass can be seen as at a Left-Right transition

(this is not $SU(2)_L$ gauge invariant) $m_f \overline{f_L} f_R$

If the SM is the fundamental theory:

- All terms in lagrangian (including masses) must be $\begin{cases} \text{gauge invariant} \\ \text{renormalizable (dim <math>\leq 4$)} \end{cases}

– A gauge invariant fermion mass is generated by interaction with the Higgs field $\lambda_f \overline{f_L} \phi f_R \rightarrow m_f = \lambda_f v$

($v \equiv$ Higgs vacuum expectation value $\sim 250 \text{ GeV}$)

- But there are no right-handed neutrinos
 - \Rightarrow No renormalizable gauge-invariant operator for tree level ν mass
- SM gauge invariance also implies the accidental symmetry $G_{\rm SM}^{\rm global} = U(1)_{\rm B} \times U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}} \Rightarrow m_{\nu} = 0$ to all orders

Thus the most striking implication of ν masses:

There is New Physics Beyond the SM

And it is also the only solid evidence! To go further one has to be cautious...

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable

(dim > 4) operators

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators

First NP effect \Rightarrow dim=5 operator There is only one!

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_{5} = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_{Li}^{c}} \tilde{\phi}^{*} \right)$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators
- First NP effect \Rightarrow dim=5 operator There is only one!
- which after symmetry breaking induces a ν Majorana mass

 $\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_L^c}_i \tilde{\phi}^* \right)$$

$$(M_{\nu})_{ij} = \frac{Z_{ij}^{\nu}}{2} \frac{v^2}{\Lambda_{\rm NP}}$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators
- First NP effect \Rightarrow dim=5 operator There is only one!
- which after symmetry breaking induces a ν Majorana mass
- \mathcal{L}_5 breaks total lepton and lepton flavour numbers

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_L^c}_i \tilde{\phi}^* \right)$$

$$(M_{\nu})_{ij} = \frac{Z_{ij}^{\nu}}{2} \frac{v^2}{\Lambda_{\rm NP}}$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators
- First NP effect \Rightarrow dim=5 operator There is only one!
- which after symmetry breaking induces a ν Majorana mass
- \mathcal{L}_5 breaks total lepton and lepton flavour numbers

Implications:

- It is natural that ν mass is the first evidence of NP
- Naturally $m_{
 u} \ll$ other fermions masses $\sim \lambda^f v$
- $-m_{\nu} > \sqrt{\Delta m_{atm}^2} \sim 0.05 \text{ eV} \Rightarrow \Lambda_{\mathrm{NP}} < 10^{15} \text{ GeV}$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_{Li}^c} \tilde{\phi}^* \right)$$

$$(M_{\nu})_{ij} = \frac{Z_{ij}^{\nu}}{2} \frac{v^2}{\Lambda_{\rm NP}}$$

If SM is an effective low energy theory, for $E \ll \Lambda_{\rm NP}$

- The same particle content as the SM and same pattern of symmetry breaking
- But there can be non-renormalizable (dim> 4) operators
- First NP effect \Rightarrow dim=5 operator There is only one!
- which after symmetry breaking induces a ν Majorana mass
- \mathcal{L}_5 breaks total lepton and lepton flavour numbers

Implications:

- It is natural that ν mass is the first evidence of NP
- Naturally $m_{\nu} \ll$ other fermions masses $\sim \lambda^f v$

$$-m_{\nu} > \sqrt{\Delta m_{atm}^2} \sim 0.05 \text{ eV} \Rightarrow \Lambda_{\text{NP}} < 10^{15} \text{ GeV}$$

But this is scale was already known to particle physicists...

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{n} \frac{1}{\Lambda_{\rm NP}^{n-4}} \mathcal{O}_n$$

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_L^c}_i \tilde{\phi}^* \right)$$

$$(M_{\nu})_{ij} = \frac{Z_{ij}^{\nu}}{2} \frac{v^2}{\Lambda_{\rm NP}}$$

$$m_{\nu} > \sqrt{\Delta m_{\rm atm}^2} \sim 0.05 {\rm eV} \Longrightarrow 10^{10} < \Lambda_{\rm NP} < 10^{15} {\rm GeV}$$

New Physics Scale close to Grand Unification scale

Also the generated neutrino mass term is Majorana : \Rightarrow It violates total lepton number

$$\mathcal{L}_5 = \frac{Z_{ij}^{\nu}}{\Lambda_{\rm NP}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_L^c}_i \tilde{\phi}^* \right)$$

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

Simplest NP: add right-handed ν_R (=SM singlet) neutrinos

Simplest NP: add right-handed ν_R (=SM singlet) neutrinos

Well above the electroweak (EW) scale

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} + \text{h.c.}$$

Simplest NP: add right-handed ν_R (=SM singlet) neutrinos

Well above the electroweak (EW) scale

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} + \text{h.c.}$$

 ν_R is a EW singlet $\Rightarrow M_{Rij} >>$ EW scale

Simplest NP: add right-handed ν_R (=SM singlet) neutrinos

Well above the electroweak (EW) scale

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} + \text{h.c.}$$

 ν_R is a EW singlet $\Rightarrow M_{Rij} >>$ EW scale

Below EW symmetry breaking scale ($E \ll M_R$): a) $m_D = \lambda^{\nu} v \sim$ mass of other fermions is generated b) ν_R are so heavy that can be "integrated out"

Simplest NP: add right-handed ν_R (=SM singlet) neutrinos

Well above the electroweak (EW) scale

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} + \text{h.c.}$$

 ν_R is a EW singlet $\Rightarrow M_{Rij} >>$ EW scale

Below EW symmetry breaking scale ($E \ll M_R$):

a) $m_D = \lambda^{\nu} v \sim \text{mass of other fermions is generated}$

b) ν_R are so heavy that can be "integrated out"

$$\bigcup E \ll M_R$$

$$\mathcal{L}_{\rm NP} \Rightarrow \mathcal{L}_5 = \frac{(\lambda^{\nu T} \lambda^{\nu})_{ij}}{M_{\rm R}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_{Li}^c} \tilde{\phi}^* \right) \Rightarrow m_{\nu} = m_D^T \frac{1}{M_R} m_{Dis}$$

Simplest NP: add right-handed ν_R (=SM singlet) neutrinos

Well above the electroweak (EW) scale

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} + \text{h.c.}$$

 ν_R is a EW singlet $\Rightarrow M_{Rij} >>$ EW scale

Below EW symmetry breaking scale ($E \ll M_R$):

a) $m_D = \lambda^{\nu} v \sim$ mass of other fermions is generated b) ν_R are so heavy that can be "integrated out"

 $\bigcup E \ll M_R$

$$\mathcal{L}_{\rm NP} \Rightarrow \mathcal{L}_5 = \frac{(\lambda^{\nu T} \lambda^{\nu})_{ij}}{M_{\rm R}} \left(\tilde{\phi}^{\dagger} L_{Lj} \right) \left(\overline{L_{Li}^c} \tilde{\phi}^* \right) \Rightarrow m_{\nu} = m_D^T \frac{1}{M_R} m_D \frac{1}{M_R}$$

Lessons:

- $\mathcal{L}_{\mathrm{NP}}$ contains 18 parameters which we want to know
- $-\mathcal{L}_5$ contains 9 parameters which we can measure
- \Rightarrow Same \mathcal{O}_5 can give very different \mathcal{L}_{NP}
- \Rightarrow It is *difficult* to "imply" bottom-up (model independently)

Physics of Massive Neutrinos

Baryogenesis and the SM

• From Nucleosytesys and CMBR data $\Rightarrow Y_B = \frac{n_b - n_{\overline{b}}}{s} = \frac{n_b}{s} \sim 10^{-10}$

- From Nucleosytesys and CMBR data $\Rightarrow Y_B = \frac{n_b n_{\overline{b}}}{s} = \frac{n_b}{s} \sim 10^{-10}$
- *Y_B* can be dynamically generated if *Three Sakharov Conditions* are verified:

- From Nucleosytesys and CMBR data $\Rightarrow Y_B = \frac{n_b n_{\overline{b}}}{s} = \frac{n_b}{s} \sim 10^{-10}$
- *Y_B* can be dynamically generated if *Three Sakharov Conditions* are verified:
 - Baryon number is violated
 - C and CP are violated
 - Departure from thermal equilibrium

- From Nucleosytesys and CMBR data $\Rightarrow Y_B = \frac{n_b n_{\overline{b}}}{s} = \frac{n_b}{s} \sim 10^{-10}$
- Y_B can be dynamically generated if *Three Sakharov Conditions* are verified:
 - Baryon number is violated
 - C and CP are violated
 - Departure from thermal equilibrium

- The SM verifies these conditions:
- \rightarrow Conserves B L but violates B + L
- \rightarrow CP violation due to δ_{CKM}
- → Departure from thermal equilibrium at Electroweak Phase Transition

- From Nucleosytesys and CMBR data $\Rightarrow Y_B = \frac{n_b n_{\overline{b}}}{s} = \frac{n_b}{s} \sim 10^{-10}$
- Y_B can be dynamically generated if *Three Sakharov Conditions* are verified:
 - Baryon number is violated
 - C and CP are violated
 - Departure from thermal equilibrium
 - But the SM fails on two points:
 - With the bound of SM Higgs mass the EWPT is not strong first order PT
 - CKM CP violation is too suppressed

- The SM verifies these conditions:
- \rightarrow Conserves B L but violates B + L
- \rightarrow CP violation due to δ_{CKM}
- → Departure from thermal equilibrium at Electroweak Phase Transition

Baryogenesis and the SM

- From Nucleosytesys and CMBR data $\Rightarrow Y_B = \frac{n_b n_{\overline{b}}}{s} = \frac{n_b}{s} \sim 10^{-10}$
- Y_B can be dynamically generated if *Three Sakharov Conditions* are verified:
 - Baryon number is violated
 - C and CP are violated
 - Departure from thermal equilibrium
 - But the SM fails on two points:
 - With the bound of SM Higgs mass the EWPT is not strong first order PT
 - CKM CP violation is too suppressed

$$\Psi$$
$$Y_{B,SM} \ll 10^{-10}$$

- The SM verifies these conditions:
- \rightarrow Conserves B L but violates B + L
- \rightarrow CP violation due to δ_{CKM}
- → Departure from thermal equilibrium at Electroweak Phase Transition

Physics of Massive Neutrinos

• From the analysis of oscillation data $\Rightarrow m_{\nu_3} \gtrsim 0.05 \text{ eV}$

- From the analysis of oscillation data $\Rightarrow m_{\nu_3} \gtrsim 0.05 \text{ eV}$
- If m_{ν} is generated via the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} \Rightarrow m_{\nu} \sim \frac{\lambda^2 \langle \phi \rangle^2}{M_R}$$

- From the analysis of oscillation data $\Rightarrow m_{\nu_3} \gtrsim 0.05 \text{ eV}$
- If m_{ν} is generated via the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} \Rightarrow m_{\nu} \sim \frac{\lambda^2 \langle \phi \rangle^2}{M_R}$$

 $(M_{
u_{R3}}/\lambda_3^2 \lesssim 10^{15}~{
m GeV})$

- From the analysis of oscillation data $\Rightarrow m_{\nu_3} \gtrsim 0.05 \text{ eV}$
- If m_{ν} is generated via the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} \implies m_{\nu} \sim \frac{\lambda^2 \langle \phi \rangle^2}{M_R}$$

- \Rightarrow Lepton Number is Violated (M_R)
- \Rightarrow New Sources of CP violation λ
- $\Rightarrow \text{Decay of } \nu_R \text{ can be out of equilibrium}$ $(if \Gamma_{\nu_R} \ll \text{Universe expansion rate}) \Rightarrow \Gamma_{\nu_R} \ll H \big|_{T=M_{\nu_R}}$

 $(M_{\nu_{R3}}/\lambda_3^2 \lesssim 10^{15} \,\mathrm{GeV})$

- From the analysis of oscillation data $\Rightarrow m_{\nu_3} \gtrsim 0.05 \text{ eV}$
- If m_{ν} is generated via the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} \implies m_{\nu} \sim \frac{\lambda^2 \langle \phi \rangle^2}{M_R}$$

- \Rightarrow Lepton Number is Violated (M_R)
- \Rightarrow New Sources of CP violation λ

$$\Rightarrow \text{Decay of } \nu_R \text{ can be out of equilibrium} \\ (\text{if } \Gamma_{\nu_R} \ll \text{Universe expansion rate}) \Rightarrow \Gamma_{\nu_R} \ll H \big|_{T = M_{\nu_R}} \\ \downarrow \downarrow \\ \text{Leptogenesis} \equiv \text{generation of lepton asymmetry } Y_L \\ \end{bmatrix}$$

 $(M_{\nu_{R3}}/\lambda_3^2 \lesssim 10^{15} \,\mathrm{GeV})$

- From the analysis of oscillation data $\Rightarrow m_{\nu_3} \gtrsim 0.05 \text{ eV}$
- If m_{ν} is generated via the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} \implies m_{\nu} \sim \frac{\lambda^2 \langle \phi \rangle^2}{M_R}$$

- \Rightarrow Lepton Number is Violated (M_R)
- \Rightarrow New Sources of CP violation λ

• At the electroweak transition sphaleron processes:

 $\Rightarrow Y_L$ is transformed in $Y_B \simeq -\frac{Y_L}{2}$

 $(M_{\nu_{R3}}/\lambda_3^2 \lesssim 10^{15}~{
m GeV})$

Physics of Massive Neutrinos
In the the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Rij}} \nu_R{}_j^c + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj} \qquad \text{nzalez-Garcia}$$

Physics of Massive Neutrinos
In the the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Rij}} \nu_R{}^c_j + \lambda^{\nu}_{ij} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj}$$
 nzalez-Garcia

1

- In the Early Universe decay of heavy
$$\nu_R$$
: $\Gamma(\nu_R \to \phi l_L) = \frac{1}{8\pi} \sum_i (\lambda \lambda^{\dagger})_{ii}^2 M_{\nu_{Ri}}$
• In the the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj}$$
''nzalez-Garcia

- In the Early Universe decay of heavy ν_R : $\Gamma(\nu_R \to \phi l_L) = \frac{1}{8\pi} \sum_i (\lambda \lambda^{\dagger})_{ii}^2 M_{\nu_{Ri}}$
- CP can be violated at 1-loop

• In the the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_R{}_j^c + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj}$$
 mzalez-Garcia

- In the Early Universe decay of heavy ν_R : $\Gamma(\nu_R \to \phi l_L) = \frac{1}{8\pi} \sum_i (\lambda \lambda^{\dagger})_{ii}^2 M_{\nu_{Ri}}$
- CP can be violated at 1-loop

$$\epsilon_{L} = \frac{\Gamma(\nu_{R} \to \phi \, l_{L}) - \Gamma(\nu_{R} \to \overline{\phi} \, \overline{l_{L}})}{\Gamma(\nu_{R} \to \phi \, l_{L}) + \Gamma(\nu_{R} \to \overline{\phi} \, \overline{l_{L}})} = -\frac{1}{8\pi} \sum_{k} \frac{Im[(\lambda \lambda^{\dagger})_{k1}^{2}]}{(\lambda \lambda^{\dagger})_{11}} \times f\left(\frac{M_{\nu_{Rk}}}{M_{\nu_{R1}}}\right)$$
$$\Rightarrow |\epsilon_{L}| \lesssim 0.1 \frac{M_{\nu_{R1}}}{\langle \phi \rangle^{2}} (m_{\nu_{3}} - m_{\nu_{1}})$$
$$Y_{L} = \frac{n_{\nu_{R}}}{s} \epsilon_{L} \, d \sim 10^{-3} d \, \epsilon_{L} \qquad n_{\nu_{R}} \equiv \text{density of } \nu_{R} \quad (d < 1 \equiv \text{dilution factor})$$

• In the the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj}$$
 "nzalez-Garcia

- In the Early Universe decay of heavy ν_R : $\Gamma(\nu_R \to \phi l_L) = \frac{1}{8\pi} \sum_i (\lambda \lambda^{\dagger})_{ii}^2 M_{\nu_{Ri}}$
- CP can be violated at 1-loop

$$\epsilon_{L} = \frac{\Gamma(\nu_{R} \to \phi \, l_{L}) - \Gamma(\nu_{R} \to \overline{\phi} \, \overline{l_{L}})}{\Gamma(\nu_{R} \to \phi \, l_{L}) + \Gamma(\nu_{R} \to \overline{\phi} \, \overline{l_{L}})} = -\frac{1}{8\pi} \sum_{k} \frac{Im[(\lambda \lambda^{\dagger})_{k1}^{2}]}{(\lambda \lambda^{\dagger})_{11}} \times f\left(\frac{M_{\nu_{Rk}}}{M_{\nu_{R1}}}\right)$$
$$\Rightarrow |\epsilon_{L}| \lesssim 0.1 \frac{M_{\nu_{R1}}}{\langle \phi \rangle^{2}} (m_{\nu_{3}} - m_{\nu_{1}})$$
$$Y_{L} = \frac{n_{\nu_{R}}}{s} \epsilon_{L} \, d \sim 10^{-3} d \, \epsilon_{L} \qquad n_{\nu_{R}} \equiv \text{density of } \nu_{R} \quad (d < 1 \equiv \text{dilution factor})$$

Out of Equilibrium condition $\Gamma_{\nu_R} \ll H \Big|_{T=M_{\nu_R}} \Rightarrow \tilde{m_1} \equiv \frac{(\lambda \lambda^{\dagger})_{11}^2 \langle \phi \rangle^2}{M_{\nu_{R1}}} \lesssim 5 \times 10^{-3} eV$

• In the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj}$$

$$M^{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$

 $m_D = \lambda \langle \phi \rangle$ is a 3 × 3 matrix

- M_R is a 3 × 3 symmetric matrix
- $\Rightarrow M^{\nu}$ has 6 physical phases

• In the See-saw mechanism

$$-\mathcal{L}_{\rm NP} = \frac{1}{2} M_{Rij} \overline{\nu_{Ri}} \nu_{Rj}^{\ c} + \lambda_{ij}^{\nu} \overline{\nu_{Ri}} \tilde{\phi}^{\dagger} L_{Lj}$$

$$M^{\nu} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$

 $m_D = \lambda \langle \phi \rangle$ is a 3 × 3 matrix

 M_R is a 3 × 3 symmetric matrix

- $\Rightarrow M^{\nu}$ has 6 physical phases
- \Rightarrow It is easy to generate $\epsilon_L \sim 10^{-6}$

 $\Rightarrow m_{\text{light}}^{\nu} = m_D^T M_N^{-1} m_D$ has 3 physical phases

Oscillation experiments can only see one of these three phases

 \Rightarrow No direct correspondence between CPV in leptogenesis and CPV in oscillations

- The final Y_B depends on:
 - $-\epsilon_L$ the CP asymmetry
 - $-M_{\nu_{R1}}$ the mass of the lightest ν_R

 $-\tilde{m_1} \equiv \frac{(\lambda\lambda^{\dagger})_{11}^2 \langle \phi \rangle^2}{M_{\nu_{R1}}}$ the effective neutrino mass

 $-m_{
u_1}^2 + m_{
u_2}^2 + m_{
u_3}^2$ the sum of the light neutrinos mass squared

• To generate the required Y_B :

 $-M_{\nu_{R1}} \gtrsim 4 \times 10^8 \text{ GeV}$

 $-\,m_{\nu_3} \lesssim 0.12~{\rm eV}$

– Large CP phases

The CP violating phase relevant for leptogenesis

may not be the same as the one relevant for oscillations

Concha Gonzalez-Garcia

Summary

• Neutrino oscillation searches have shown us

$$-\Delta m_{31}^2 \sim 2 \times 10^{-3} \text{ eV}^2$$
 and $\Delta m_{21}^2 \sim 8 \times 10^{-5} \text{ eV}^2 \Rightarrow \nu$'s are massive

$$-|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \Rightarrow \text{Different from } U_{CKM}$$

Summary

• Neutrino oscillation searches have shown us

$$-\Delta m^2_{31} \sim 2 \times 10^{-3} \text{ eV}^2$$
 and $\Delta m^2_{21} \sim 8 \times 10^{-5} \text{ eV}^2 \Rightarrow \nu$'s are massive

$$-|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \Rightarrow \text{Different from } U_{CKM}$$

• $m_{\nu} \neq 0 \Rightarrow$ Need to extend SM It can be done:

(a) *breaking* total lepton number \rightarrow Majorana $\nu : \nu = \nu^C$

(b) *conserving* total lepton number \rightarrow Dirac $\nu : \nu \neq \nu^C$

Summary

• Neutrino oscillation searches have shown us

$$-\Delta m^2_{31} \sim 2 \times 10^{-3} \text{ eV}^2$$
 and $\Delta m^2_{21} \sim 8 \times 10^{-5} \text{ eV}^2 \Rightarrow \nu$'s are massive

$$-|U_{\text{LEP}}| \simeq \begin{pmatrix} \frac{1}{\sqrt{2}}(1+\mathcal{O}(\lambda)) & \frac{1}{\sqrt{2}}(1-\mathcal{O}(\lambda)) & \epsilon \\ -\frac{1}{2}(1-\mathcal{O}(\lambda)+\epsilon) & \frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \\ \frac{1}{2}(1-\mathcal{O}(\lambda)-\epsilon) & -\frac{1}{2}(1+\mathcal{O}(\lambda)-\epsilon) & \frac{1}{\sqrt{2}} \end{pmatrix} \xrightarrow{\lambda \sim 0.2} \epsilon \lesssim 0.2$$

$$\Rightarrow \text{Different from } U_{CKM}$$

• $m_{\nu} \neq 0 \Rightarrow$ Need to extend SM It can be done:

- (a) *breaking* total lepton number \rightarrow Majorana $\nu : \nu = \nu^C$
- (b) *conserving* total lepton number \rightarrow Dirac $\nu : \nu \neq \nu^C$
- Majorana $\nu's$ are more *Natural*: appear *generically* if SM is a LE effective theory

 $-\Lambda_{NP} \lesssim 10^{15}~{
m GeV}$

- Results Fit well with GUT expectations
- Leptogenesis may explain the baryon asymmetry

• Still open questions

Conclusions

. . .

Is $\theta_{13} \neq 0$? Is there CP violation in the leptons (is $\delta \neq 0, \pi$)? Is θ_{23} large or maximal? Normal or Inverted mass ordering? Are neutrino masses: hierarchical: $m_i - m_j \sim m_i + m_j$? degenerated: $m_i - m_j \ll m_i + m_j$? Dirac or Majorana? what about the Majorana Phases?

• Still open questions

Is $\theta_{13} \neq 0$? Is there CP violation in the leptons (is $\delta \neq 0, \pi$)? Is θ_{23} large or maximal? Normal or Inverted mass ordering? Are neutrino masses: hierarchical: $m_i - m_j \sim m_i + m_j$? degenerated: $m_i - m_j \ll m_i + m_j$? Dirac or Majorana? what about the Majorana Phases?

• To answer:

Proposed new generation ν osc experiments:

– LBL with Conventional Superbeams and/or β beams and/or ν -factory:

Conclusions

- Medium Baseline Reactor Experiment

• Still open questions

Conclusions

Is $\theta_{13} \neq 0$? Is there CP violation in the leptons (is $\delta \neq 0, \pi$)? Is θ_{23} large or maximal? Normal or Inverted mass ordering? Are neutrino masses: hierarchical: $m_i - m_j \sim m_i + m_j$? degenerated: $m_i - m_j \ll m_i + m_j$? Dirac or Majorana? what about the Majorana Phases?

• To answer:

Proposed new generation ν osc experiments:

- LBL with Conventional Superbeams and/or β beams and/or ν -factory:
- Medium Baseline Reactor Experiment

Also no-oscillation experiments:

- $-\nu$ -less $\beta\beta$ decay,³H beta decay
- Interesting input from cosmological data

Rich and Challenging Experimental Program