Plan of Lectures

- **I.** Standard Neutrino Properties and Mass Terms (Beyond Standard)
- **II.** Effects of ν Mass: Neutrino Oscillations (Vacuum)
- **III.** Neutrino Oscillations in Matter
- **IV.** The Emerging Picture and Some Lessons

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

Summary I

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos

Summary I

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$

Summary I

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - conserving total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
- Question: How to search for m_{ν} ?

Answer: Today

Plan of Lecture II

Effects of ν Mass: Neutrino Oscillations (Vacuum)

Lepton Mixing

Direct Probes of Neutrino Mass Scale Weak decays, ν -less $\beta\beta$ decay, Cosmology

Neutrino Oscillations in Vacuum

Vacuum Neutrino Oscillations Searches and Findings

Alternative Mechanisms for Neutrino Oscillations

• Charged current and mass for 3 charged leptons ℓ_i and N neutrinos ν_j in weak basis

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Charged current and mass for 3 charged leptons ℓ_i and N neutrinos ν_j in weak basis

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Changing to mass basis by rotations

$$\ell^W_{L,i} = V^\ell_{L\,ij} \ell_{L,j} \qquad \ell^W_{R,i} = V^\ell_{R\,ij} \ell_{R,j} \qquad \nu^W_i = V^\nu_{ij} \nu_j$$

 $V_L^{\ell^{\dagger}} M_\ell V_R^{\ell} = \operatorname{diag}(m_e, m_\mu, m_\tau)$

 $V_{L,R}^{\ell} \equiv$ Unitary 3×3 matrices

 $V^{\nu T} M_{\nu} V^{\nu} = \text{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$

 $V^{\nu} \equiv$ Unitary $N \times N$ matrix.

• Charged current and mass for 3 charged leptons ℓ_i and N neutrinos ν_j in weak basis

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Changing to mass basis by rotations

$$\ell^W_{L,i} = V^\ell_{L\,ij} \ell_{L,j} \qquad \ell^W_{R,i} = V^\ell_{R\,ij} \ell_{R,j} \qquad \nu^W_i = V^\nu_{ij} \nu_j$$

$$V_L^{\ell^{\dagger}} M_\ell V_R^{\ell} = \operatorname{diag}(m_e, m_\mu, m_\tau)$$

 $V_{L,R}^{\ell} \equiv$ Unitary 3×3 matrices

 $V^{\nu T} M_{\nu} V^{\nu} = \text{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$

 $V^{\nu} \equiv$ Unitary $N \times N$ matrix.

• The charged current in the mass basis

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \overline{\ell_L^i} \, \gamma^\mu \, U_{\text{LEP}}^{ij} \, \nu_j \, W_\mu^+$$

• Charged current and mass for 3 charged leptons ℓ_i and N neutrinos ν_j in weak basis

$$\mathcal{L}_{CC} + \mathcal{L}_{M} = -\frac{g}{\sqrt{2}} \sum_{i=1}^{3} \overline{\ell_{L,i}^{W}} \gamma^{\mu} \nu_{i}^{W} W_{\mu}^{+} - \sum_{i,j=1}^{3} \overline{\ell_{L,i}^{W}} M_{\ell i j} \ell_{R,j}^{W} - \frac{1}{2} \sum_{i,j=1}^{N} \overline{\nu_{i}^{cW}} M_{\nu i j} \nu_{j}^{W} + \text{h.c.}$$

• Changing to mass basis by rotations

$$\ell^W_{L,i} = V^\ell_{L\,ij}\ell_{L,j} \qquad \ell^W_{R,i} = V^\ell_{R\,ij}\ell_{R,j} \qquad \nu^W_i = V^\nu_{ij}\nu_j$$

$$V_L^{\ell^{\dagger}} M_\ell V_R^{\ell} = \operatorname{diag}(m_e, m_\mu, m_\tau)$$

 $V_{L,R}^{\ell} \equiv$ Unitary 3×3 matrices

 $V^{\nu T} M_{\nu} V^{\nu} = \text{diag}(m_1^2, m_2^2, m_3^2, \dots, m_N^2)$

 $V^{\nu} \equiv$ Unitary $N \times N$ matrix.

• The charged current in the mass basis

$$\mathcal{L}_{CC} = -\frac{g}{\sqrt{2}} \overline{\ell_L^i} \, \gamma^\mu \, U_{\text{LEP}}^{ij} \, \nu_j \, W_\mu^+$$

 $U_{
m LEP} \equiv 3 imes N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu kj} P_{jj}^{\nu}$$

$$U_{\text{LEP}} \equiv 3 \times N$$
 matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu kj} P_{jj}^{\nu}$$

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

- P_{ii}^{ℓ} phase absorved in l_i
- P_{kk}^{ν} phase absorved in ν_i (only possible if ν_i is Dirac)

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu kj} P_{jj}^{\nu}$$

- P_{ii}^{ℓ} phase absorved in l_i
- P_{kk}^{ν} phase absorved in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

- P_{ii}^{ℓ} phase absorved in l_i
- P_{kk}^{ν} phase absorved in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$
- For example for 3 Dirac ν 's : 3 Mixing angles + 1 Dirac Phase

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $U_{\text{LEP}} \equiv 3 \times N$ matrix

$$U_{\rm LEP}^{ij} = \sum_{k=1}^{3} P_{ii}^{\ell} V_{L}^{\ell^{\dagger ik}} V^{\nu k j} P_{jj}^{\nu}$$

- P_{ii}^{ℓ} phase absorved in l_i
- P_{kk}^{ν} phase absorved in ν_i (only possible if ν_i is Dirac)
- $U_{\text{LEP}}U_{\text{LEP}}^{\dagger} = I_{3\times 3}$ but in general $U_{\text{LEP}}^{\dagger}U_{\text{LEP}} \neq I_{N\times N}$
- For example for 3 Dirac ν 's : 3 Mixing angles + 1 Dirac Phase

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• For 3 Majorana ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\phi_2} & 0 \\ 0 & 0 & e^{i\phi_3} \end{pmatrix}$$

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

• Neutrino masses can have kinematic effects

• Neutrino masses can have kinematic effects

• Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^{+}_{\mu}\sum_{ij}\left(U^{ij}_{LEP}\overline{\ell^{i}}\gamma^{\mu}L\nu^{j}+U^{ij}_{CKM}\overline{U^{i}}\gamma^{\mu}LD^{j}\right)+h.c.$$

$$\mathbf{w}^{\dagger}$$

$$\mathbf{w}^{\dagger}$$

$$\mathbf{u}^{j}_{\mathbf{i}}$$

$$\mathbf{w}^{\dagger}$$

$$\mathbf{u}^{j}_{\mathbf{i}}$$

$$\mathbf{u}^{j}_{\mathbf{i}}$$

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

• SM gauge invariance does not imply $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ symmetry

- Neutrino masses can have kinematic effects
- Also if neutrinos have a mass the charged current interactions of leptons are not diagonal (same as quarks)

- SM gauge invariance does not imply $U(1)_{L_e} \times U(1)_{L_{\mu}} \times U(1)_{L_{\tau}}$ symmetry
- Total lepton number $U(1)_L = U(1)_{Le+L_{\mu}+L_{\tau}}$ can be or cannot be still a symmetry depending on whether neutrinos are Dirac or Majorana

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{LEP}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j+U^{ij}_{CKM}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right)+h.c.$$

• To fully determine the lepton flavour sector we want to know:

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{LEP}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j+U^{ij}_{CKM}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right)+h.c.$$

- To fully determine the lepton flavour sector we want to know:
 - * How many, N, neutral states ν_i and their masses m_i

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{LEP}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j+U^{ij}_{CKM}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right)+h.c.$$

- To fully determine the lepton flavour sector we want to know:
 - * How many, N, neutral states ν_i and their masses m_i

* Their mixing: # angles =
$$\begin{cases} 1 \text{ for } N = 2\\ 3 \text{ for } N = 3\\ 6 \text{ for } N = 4 \end{cases}$$

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{LEP}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j+U^{ij}_{CKM}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right)+h.c.$$

- To fully determine the lepton flavour sector we want to know:
 - * How many, N, neutral states ν_i and their masses m_i

* Their mixing: # angles =
$$\begin{cases} 1 \text{ for } N = 2 \\ 3 \text{ for } N = 3 \\ 6 \text{ for } N = 4 \end{cases}$$

* Their CP properties:

Dirac:
$$\nu^C \neq \nu$$
 # phases =
$$\begin{cases} 0 \text{ for } N = 2\\ 1 \text{ for } N = 3\\ 3 \text{ for } N = 4 \end{cases}$$

Majorana: $\nu^C = \nu$ # phases =
$$\begin{cases} 1 \text{ for } N = 2\\ 3 \text{ for } N = 3\\ 6 \text{ for } N = 3\\ 6 \text{ for } N = 4 \end{cases}$$

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 $^{3}H \rightarrow ^{3}He + e + \overline{\nu}_{e}$

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 $^{3}H \rightarrow ^{3}He + e + \overline{\nu}_{e}$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{Cp \ E \ F(E)}} \propto \sqrt{(Q-T)\sqrt{(Q-T)^2 - m_{\nu}^2}}$$

 $T = E_e - m_e$, Q = maximum kinetic energy, (for ³H beta decay Q = 18.6 KeV)

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 ${}^{3}H \rightarrow {}^{3}He + e + \overline{\nu}_{e}$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{Cp \ E \ F(E)}} \propto \sqrt{(Q-T)\sqrt{(Q-T)^2 - m_\nu^2}}$$

 $T = E_e - m_e$, Q = maximum kinetic energy, (for ³*H* beta decay Q = 18.6 KeV)

• $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

$$m_{\nu} = 0 \Rightarrow T_{\max} = Q \qquad \text{K(T)}$$

$$m_{\nu} \neq 0 \Rightarrow T_{\max} = Q - m_{\nu}$$

$$(T)$$

• Fermi proposed a kinematic search of ν_e mass from beta spectra in ${}^{3}H$ beta decay

 ${}^{3}H \rightarrow {}^{3}He + e + \overline{\nu}_{e}$

• For "allowed" nuclear transitions, the electron spectrum is given by phase space alone

$$K(T) \equiv \sqrt{\frac{dN}{dT} \frac{1}{Cp \ E \ F(E)}} \propto \sqrt{(Q-T)\sqrt{(Q-T)^2 - m_{\nu}^2}}$$

 $T = E_e - m_e$, Q = maximum kinetic energy, (for ³H beta decay Q = 18.6 KeV)

• $m_{\nu} \neq 0 \Rightarrow$ distortion from the straight-line at the end point of the spectrum

- At present only a bound: $m_{\nu_e}^{eff} \equiv \sqrt{\sum m_j^2 |U_{ej}|^2} < 2.2 \text{ eV} \quad (at 95 \% \text{ CL}) \\ \text{(Mainz \& Troisk experiments)}$ - Katrin proposed to improve present sensitivity to $m_{eff}^\beta \sim 0.3 \text{ eV}$

Neutrino Mass Scale: Other Channels

Muon neutrino mass

• From the two body decay at rest

 $\pi^-
ightarrow \mu^- + \overline{\nu}_\mu$

• Energy momentum conservation:

$$m_{\pi} = \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2}$$
$$m_{\nu}^2 = m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

 $m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_j^2 |U_{\mu j}|^2} < 190 \text{ KeV}$

Neutrino Mass Scale: Other Channels

Muon neutrino mass

• From the two body decay at rest

 $\pi^- \to \mu^- + \overline{\nu}_\mu$

• Energy momentum conservation:

$$m_{\pi} = \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2}$$
$$m_{\nu}^2 = m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

 $m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_j^2 |U_{\mu j}|^2} < 190 \text{ KeV}$

Tau neutrino mass

- The τ is much heavier $m_{\tau} = 1.776 \text{ GeV}$ \Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$au \to n\pi + \nu_{ au} \quad \text{with } n \ge 3$$

• Lep I experiments obtain:

$$m_{\nu_{\tau}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\tau j}|^{2}} < 18.2 \text{ MeV}$$

Neutrino Mass Scale: Other Channels

Muon neutrino mass

• From the two body decay at rest

 $\pi^- \to \mu^- + \overline{\nu}_\mu$

• Energy momentum conservation:

$$m_{\pi} = \sqrt{p_{\mu}^2 + m_{\mu}^2} + \sqrt{p_{\mu}^2 + m_{\nu}^2}$$
$$m_{\nu}^2 = m_{\pi}^2 + m_{\mu}^2 - 2 + m_{\mu}\sqrt{p^2 + m_{\pi}^2}$$

- Measurement of p_{μ} plus the precise knowledge of m_{π} and $m_{\mu} \Rightarrow m_{\nu}$
- The present experimental result bound:

 $m_{\nu_{\mu}}^{eff} \equiv \sqrt{\sum m_j^2 |U_{\mu j}|^2} < 190 \text{ KeV}$

Tau neutrino mass

- The τ is much heavier $m_{\tau} = 1.776 \text{ GeV}$ \Rightarrow Large phase space \Rightarrow difficult precision for m_{ν}
- The best precision is obtained from hadronic final states

$$au o n\pi +
u_{ au} \quad \text{with } n \ge 3$$

• Lep I experiments obtain:

$$m_{\nu_{\tau}}^{eff} \equiv \sqrt{\sum m_{j}^{2} |U_{\tau j}|^{2}} < 18.2 \text{ MeV}$$

 \Rightarrow If mixing angles U_{ej} are not negligible

Best kinematic limit on Neutrino Mass Scale comes from Tritium Beta Decay

Neutrino Mass Scale: ν **-less Double-** β **Decay**

 \Rightarrow no same state \Rightarrow Amplitude = 0

- If ν Majorana $\Rightarrow \nu = \nu^c$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \nu (\nu^c)^T \neq 0$

• Amplitude of ν -less- $\beta\beta$ decay is proportional to $|\langle m_{ee}\rangle| = |\sum U_{ej}^2 m_j|$

- If ν Dirac $\Rightarrow \nu$ annihilates a neutrino and creates an antineutrino

 \Rightarrow no same state \Rightarrow Amplitude = 0

- If ν Majorana $\Rightarrow \nu = \nu^c$ annihilates and creates a neutrino=antineutrino \Rightarrow same state \Rightarrow Amplitude $\propto \nu (\nu^c)^T \neq 0$

• Amplitude of ν -less- $\beta\beta$ decay is proportional to $|\langle m_{ee}\rangle| = |\sum U_{ej}^2 m_j|$

– Present bound: $|\langle m_{ee} \rangle| < 0.35 \text{ eV}$ +theor. uncert. < 1.05 eV (90% CL)

- Several proposed experiments to reach $|\langle m_{ee} \rangle| \sim 10^{-2} \,\mathrm{eV}$

Neutrino Mass Scale in Cosmology

 $\sum m_{\nu_i}$ has effects on: Cosmic Microwave Background Temperature Fluctuations Most recent from WMAP Large scale structure:

2° Field Galaxy
Redshift Survey
(2dFGRS)
Sloan Digital
Sky Survey (SDSS)

Tegmark et. al astro-ph/0310723

Neutrino Mass Scale in Cosmology

 $\sum m_{\nu_i}$ has effects on: Cosmic Microwave Background Temperature Fluctuations

Most recent from WMAP

Large scale structure: – 2° Field Galaxy Redshift Survey (2dFGRS) –Sloan Digital Sky Survey (SDSS)

Neutrino Mass Scale in Cosmology

 $\sum m_{\nu_i}$ has effects on: **Cosmic Microwave Background Temperature Fluctuations** Most recent from WMAP Large scale structure: -2° Field Galaxy **Redshift Survey** (2dFGRS)

–Sloan Digital Sky Survey (SDSS)

⇒ limit on $\sum m_{\nu_i}$ depends on prior and data used to constraint $\sum m_{\nu_i} \le 0.7 - 2.1 \text{ eV}$ at 95 % CL other 12 parameters

• Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3,\ldots) = (
u_e,
u_\mu,
u_ au)$

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3,\ldots)=(
u_e,
u_\mu,
u_ au)$

 \Rightarrow Flavour is not conserved during propagation

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

$$U(\nu_1, \nu_2, \nu_3, \ldots) = (\nu_e, \nu_\mu, \nu_\tau)$$

- \Rightarrow Flavour is not conserved during propagation
- $\Rightarrow \nu$ can be detected with different (or same) flavour than produced

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3,\ldots) = (
u_e,
u_\mu,
u_ au)$

- \Rightarrow Flavour is not conserved during propagation
- $\Rightarrow \nu$ can be detected with different (or same) flavour than produced
- The probability $P_{\alpha\beta}$ of producing neutrino with flavour α and detecting with flavour β has to depend on:

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3,\ldots) = (
u_e,
u_\mu,
u_ au)$

- \Rightarrow Flavour is not conserved during propagation
- $\Rightarrow \nu$ can be detected with different (or same) flavour than produced
- The probability $P_{\alpha\beta}$ of producing neutrino with flavour α and detecting with flavour β has to depend on:
 - Misalignment between interaction and propagation states ($\equiv U$)

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3,\ldots) = (
u_e,
u_\mu,
u_ au)$

- \Rightarrow Flavour is not conserved during propagation
- $\Rightarrow \nu$ can be detected with different (or same) flavour than produced

• The probability $P_{\alpha\beta}$ of producing neutrino with flavour α and detecting with flavour β has to depend on:

- Misalignment between interaction and propagation states ($\equiv U$)
- Difference between propagation eigenvalues

- Flavour (\equiv Interaction) basis (production and detection): ν_e , ν_μ and ν_τ
- Mass basis (free propagation in space-time): ν_1 , ν_2 and ν_3 ...
- In general interaction eigenstates \neq propagation eigenstates

 $U(
u_1,
u_2,
u_3,\ldots) = (
u_e,
u_\mu,
u_ au)$

- \Rightarrow Flavour is not conserved during propagation
- $\Rightarrow \nu$ can be detected with different (or same) flavour than produced

• The probability $P_{\alpha\beta}$ of producing neutrino with flavour α and detecting with flavour β has to depend on:

- Misalignment between interaction and propagation states ($\equiv U$)
- Difference between propagation eigenvalues
- Propagation distance

Physics of Massive Neutrinos

Vacuum Oscillations

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$\ket{
u_lpha} = \sum_{i=1}^n U_{lpha i} \ket{
u_i}$$

U is the unitary mixing matrix.

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$|
u_lpha
angle = {\displaystyle \sum_{i=1}^n} U_{lpha i} \; |
u_i
angle$$

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

$$\nu(t)\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i(t)\rangle$$

• If neutrinos have mass, a weak eigenstate $|\nu_{\alpha}\rangle$ produced in $l_{\alpha} + N \rightarrow \nu_{\alpha} + N'$

is a linear combination of the mass eigenstates $(|\nu_i\rangle)$

$$|
u_lpha
angle = \displaystyle{\sum_{i=1}^n} U_{lpha i} \; |
u_i
angle$$

U is the unitary mixing matrix.

• After a distance L (or time t) it evolves

$$\nu(t)\rangle = \sum_{i=1}^{n} U_{\alpha i} |\nu_i(t)\rangle$$

• it can be detected with flavour β with probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U^*_{\beta i} \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U^*_{\beta i} \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U^*_{\beta i} \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

• We call E_i the neutrino energy and m_i the neutrino mass

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U^*_{\beta i} \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

- We call E_i the neutrino energy and m_i the neutrino mass
- Under the approximations:
 - (1) $|\nu\rangle$ is a plane wave $\Rightarrow |\nu_i(t)\rangle = \mathbf{e}^{-i E_i t} |\nu_i(0)\rangle$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

with
$$\Delta_{ij} = (E_i - E_j)t$$

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U^*_{\beta i} \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

- We call E_i the neutrino energy and m_i the neutrino mass
- Under the approximations:

(1) $|\nu\rangle$ is a plane wave $\Rightarrow |\nu_i(t)\rangle = \mathbf{e}^{-i E_i t} |\nu_i(0)\rangle$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

with
$$\Delta_{ij} = (E_i - E_j)t$$

(2) relativistic ν

$$E_i = \sqrt{p_i^2 + m_i^2} \simeq p_i + \frac{m_i^2}{2E_i}$$

• The probability

$$P_{\alpha\beta} = |\langle \nu_{\beta}(t) | \nu_{\alpha}(0) \rangle|^2 = |\sum_{i=1}^{n} U_{\alpha i} U^*_{\beta i} \langle \nu_i(t) | \nu_i(0) \rangle|^2$$

- We call E_i the neutrino energy and m_i the neutrino mass
- Under the approximations:

(1) $|\nu\rangle$ is a plane wave $\Rightarrow |\nu_i(t)\rangle = \mathbf{e}^{-i E_i t} |\nu_i(0)\rangle$

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

with
$$\Delta_{ij} = (E_i - E_j)t$$

(2) relativistic ν

$$E_i = \sqrt{p_i^2 + m_i^2} \simeq p_i + \frac{m_i^2}{2E_i}$$

(3) Assuming $p_i \simeq p_j = p \simeq E$

$$rac{\Delta_{ij}}{2} = 1.27 rac{m_i^2 - m_j^2}{\mathrm{eV}^2} rac{L/E}{\mathrm{Km/GeV}}$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin \left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{\mathrm{eV}^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{conserves CP}$$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin(\Delta_{ij})$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{Km/GeV}$$
$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$
$$\to \text{conserves CP}$$

- The last piece $2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$ opposite sign for $\overline{\nu}$ \rightarrow violates CP

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{conserves CP}$$

- The last piece
$$2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$
 opposite sign for $\overline{\nu}$
 \rightarrow violates CP

- $P_{\alpha\beta}$ depends on Theoretical Parameters
 - $\Delta m_{ij}^2 = m_i^2 m_j^2$ The mass differences
 - $U_{\alpha j}$

- - The mixing angles (and Dirac phases)

and on Two Experimental Parameters:

- The neutrino energy $\bullet E$
- Distance ν source to detector $\bullet L$

• The oscillation probability:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) + 2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27 \frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}} \frac{L/E}{\mathrm{Km/GeV}}$$

$$- \operatorname{The first term} \quad \delta_{\alpha\beta} - 4 \sum_{j \neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin^{2} \left(\frac{\Delta_{ij}}{2}\right) \quad \text{equal for } \overline{\nu} \quad (U \to U^{*})$$

$$\rightarrow \text{ conserves CP}$$

- The last piece
$$2 \sum_{j \neq i} \operatorname{Im}[U_{\alpha i}^{\star} U_{\beta i} U_{\alpha j} U_{\beta j}^{\star}] \sin(\Delta_{ij})$$
 opposite sign for $\overline{\nu}$
 \rightarrow violates CP

- $P_{\alpha\beta}$ depends on Theoretical Parameters
 - $\Delta m_{ij}^2 = m_i^2 m_j^2$ The mass differences
 - $U_{\alpha j}$ The mixing angles (and Dirac phases)

and on Two Experimental Parameters:

- E The neutrino energy
- L Distance ν source to detector
- No information on mass scale nor Majorana phases

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

• For 2-
$$\nu$$
: $U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$

L (distance)

• $\Delta m^2 \rightarrow -\Delta m^2$ and $\theta \rightarrow -\theta + \frac{\pi}{2}$ is only a redefinition $\nu_1 \leftrightarrow \nu_2$

 \Rightarrow We can chose the convention $\Delta m^2 > 0$ and $0 \le \theta \le \frac{\pi}{2}$

- $\Delta m^2 \rightarrow -\Delta m^2$ and $\theta \rightarrow -\theta + \frac{\pi}{2}$ is only a redefinition $\nu_1 \leftrightarrow \nu_2$
 - \Rightarrow We can chose the convention $\Delta m^2 > 0$ and $0 \le \theta \le \frac{\pi}{2}$
- Moreover P_{osc} is symmetric under $\Delta m^2 \rightarrow -\Delta m^2$ or $\theta \rightarrow -\theta + \frac{\pi}{2}$
 - \Rightarrow We can chose the convention $\Delta m^2 > 0$ and $0 \le \theta \le \frac{\pi}{4}$

This only happens for 2ν vacuum oscillations

L (distance)

 $-\Delta m^2 \ll E/L \implies \text{No time to oscillate} \\ \Rightarrow \langle \sin^2 \left(1.27 \Delta m^2 L/E \right) \rangle \simeq 0 \implies \langle P_{osc} \rangle \simeq 0$

- $-\Delta m^2 \ll E/L \implies \text{No time to oscillate} \\ \Rightarrow \langle \sin^2 \left(1.27 \Delta m^2 L/E \right) \rangle \simeq 0 \implies \langle P_{osc} \rangle \simeq 0$
- $-\Delta m^2 \gg E/L \Rightarrow \text{Averaged oscillations}$ $\Rightarrow \langle \sin^2 \left(1.27 \Delta m^2 L/E \right) \rangle \simeq \frac{1}{2} \rightarrow \langle P_{osc} \rangle \simeq \frac{1}{2} \sin^2(2\theta)$

Sources of ν 's

Concha Gonzalez-Garcia

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \notin 0$

- Need the right set up (
$$\equiv$$
right $\langle \frac{L}{E} \rangle$) for Δm^2

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \not \ll 0$

Source	E (GeV)	L (Km)	Δm^2 (eV ²)
Source			

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \not \ll 0$

Source	E (GeV)	L (Km)	$\Delta m^2 ~({ m eV}^2)$
Solar	10^{-3}	10^{7}	10^{-10}

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \not \ll 0$

Source	E (GeV)	L (Km)	$\Delta m^2~({ m eV}^2)$
Solar	10^{-3}	10^{7}	10^{-10}
Atmospheric	$0.1 - 10^2$	$10 - 10^3$	$10^{-1} - 10^{-4}$

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \not \ll 0$

Source	E (GeV)	L (Km)	$\Delta m^2 ~({ m eV}^2)$
Solar	10^{-3}	10^{7}	10^{-10}
Atmospheric	$0.1 - 10^2$	$10 - 10^3$	$10^{-1} - 10^{-4}$
Reactor	10^{-3}	SBL : 0.1–1	$10^{-2} - 10^{-3}$
		LBL : $10-10^2$	10^{-4} -10 ⁻⁵

To allow observation of neutrino oscillations:

– Nature has to be good: $\theta \not \ll 0$

Source	E (GeV)	L (Km)	$\Delta m^2 ~({ m eV}^2)$
Solar	10^{-3}	10^{7}	10^{-10}
Atmospheric	$0.1 - 10^2$	$10 - 10^3$	$10^{-1} - 10^{-4}$
Reactor	10^{-3}	SBL : 0.1–1 LBL : 10–10 ²	$10^{-2} - 10^{-3}$ $10^{-4} - 10^{-5}$
Accelerator	10	SBL : 0.1 LBL : $10^2 - 10^3$	$\gtrsim 0.01$ 10^{-2} – 10^{-3}

Concha Gonzalez-Garcia

ν Interactions

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per}\,\text{cm}^2 \,\text{per}\,\text{second}$$
 and $\langle E_{\nu} \rangle = 1 \,\text{GeV}$

• How many interact?

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per}\,\text{cm}^2 \,\text{per}\,\text{second}$$
 and $\langle E_{\nu} \rangle = 1 \,\text{GeV}$

• How many interact? In a human body:

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per}\,\text{cm}^2 \,\text{per}\,\text{second}$$
 and $\langle E_{\nu} \rangle = 1 \,\text{GeV}$

• How many interact? In a human body:

$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human} \quad (M \times T \equiv \text{Exposure})$$

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per cm}^2 \,\text{per second}$$
 and $\langle E_{\nu} \rangle = 1 \,\text{GeV}$

• How many interact? In a human body:

$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human} \quad (M \times T \equiv \text{Exposure})$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$F^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$F^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per cm}^2 \,\text{per second}$$
 and $\langle E_{\nu} \rangle = 1 \,\text{GeV}$

• How many interact? In a human body:

$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human} \qquad (M \times T \equiv \text{Exposure})$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

 $N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1$ interaction per lifetime

• Due to SM Weak Interactions

$$\sigma^{\nu p} \sim 10^{-38} \mathrm{cm}^2 \frac{E_{\nu}}{\mathrm{GeV}}$$

• Let's consider for example atmospheric $\nu's$?

$$\Phi_{\nu}^{\text{ATM}} = 1 \,\nu \,\text{per cm}^2 \,\text{per second}$$
 and $\langle E_{\nu} \rangle = 1 \,\text{GeV}$

• How many interact? In a human body:

$$N_{\rm int} = \Phi_{\nu} \times \sigma^{\nu p} \times N_{\rm prot}^{\rm human} \times T_{\rm life}^{\rm human} \qquad (M \times T \equiv \text{Exposure})$$

$$N_{\text{protons}}^{\text{human}} = \frac{M^{\text{human}}}{gr} \times N_A = 80 \text{kg} \times N_A \sim 5 \times 10^{28} \text{protons}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

$$T^{\text{human}} = 80 \text{ years} = 2 \times 10^9 \text{ sec}$$

 $N_{\rm int} = (5 \times 10^{28}) (2 \times 10^9) \times 10^{-38} \sim 1$ interaction per lifetime

 \Rightarrow Need huge detectors with Exposure \sim KTon \times year

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

ν Oscillations: Experimental Probes

• Generically there are two types of experiments to search for ν oscillations :

Atmospheric Neutrinos

Atmospheric $\nu_{e,\mu}$ are produced by the interaction of cosmic rays (p, He ...) with the atmosphere

EVENT CLASSIFICATION

EVENT CLASSIFICATION

• Total Rates for Contained Events

EVENT CLASSIFICATION

• Angular Distribution at

• Total Rates for Contained Events

up-going

[not to scale]

down-going

p, He

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

• Total Rates for Contained Events

[not to scale]

down-going

p, He

Atmospheric Neutrinos: Data

EVENT CLASSIFICATION

• Total Rates for Contained Events

Atmospheric ν **Oscillations: Parameter Estimate**

Atmospheric *v* **Oscillations: Parameter Estimate**

$$\langle P_{\mu\mu} \rangle = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{2E}$$

$$\sim 0.5 - 0.7$$

$$\Rightarrow \sin^2 2\theta \gtrsim 0.6$$

• From Angular Distribution:

For $E \sim 1$ GeV deficit at $L \sim 10^2 - 10^4$ Km

$$\frac{\Delta m^2 (\text{eV}^2) L(\text{km})}{2E(\text{GeV})} \sim 1$$
$$\Rightarrow \quad \Delta m^2 \sim 10^{-4} - 10^{-2} \text{eV}^2$$

Atmospheric ν **Oscillation Solution:** $\nu_{\mu} \rightarrow \nu_{\tau}$

Best fit: $\Delta m^2 = 2.2 \times 10^{-3} \text{ eV}^2$ $\tan^2 \theta = 1$

Experiment	$\left< \frac{\mathrm{E/MeV}}{\mathrm{L/m}} \right>$		lpha	β
CCFR	100	FNAL	$ u_{\mu}, u_{e}$	$ u_{ au}$
E531	25	FNAL	$ u_{\mu}, u_{e}$	$ u_{ au}$
Nomad	13	CERN	$ u_{\mu}, u_{e}$	$ u_{ au}$
Chorus	13	CERN	$ u_{\mu}, u_{e}$	$ u_{ au}$
E776	2.5	BNL	$ u_{\mu}$	$ u_e$
Karmen2	2.5	Rutherford	$ar{ u}_{\mu}$	$ar{ u}_e$
LSND	3	Los Alamos	$ar{ u}_{\mu}$	$ar{ u}_e$
Miniboone	3	Fermilab	$ u_{\mu}$	$ u_e$

LSND

- The only short distance signal for oscillation: L = 30 m with $\langle E_{\nu} \rangle \sim 30$ MeV
- Used the proton beam of Los Alamos $p + Target \rightarrow \pi^+ + X$

LSND

- The only short distance signal for oscillation: L = 30 m with $\langle E_{\nu} \rangle \sim 30 \text{ MeV}$
- Used the proton beam of Los Alamos $p + Target \rightarrow \pi^+ + X$
- observed $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ with probability $\langle P_{e\mu} \rangle = (0.26 \pm 0.07 \pm 0.05)\%$

LSND

- The only short distance signal for oscillation: L = 30 m with $\langle E_{\nu} \rangle \sim 30 \text{ MeV}$
- Used the proton beam of Los Alamos $p + Target \rightarrow \pi^+ + X$

• *Karmen* which searched for the same signal and did not observe oscillations.

LSND

- The only short distance signal for oscillation: L = 30 m with $\langle E_{\nu} \rangle \sim 30 \text{ MeV}$
- Used the proton beam of Los Alamos $p + Target \rightarrow \pi^+ + X$
- observed $\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$ with probability $\langle P_{e\mu} \rangle = (0.26 \pm 0.07 \pm 0.05)\%$

- *Karmen* which searched for the same signal and did not observe oscillations.
- *MiniBoone* in Fermilab is/has been running to solve this.

MiniBooNE

• Search for $\nu_{\mu} \rightarrow \nu_{e}$ with $E_{\nu} = 0.3 - 2$ GeV and L = 540 m

Observed spectrum of ν_e

Based on this analysis LSND Excluded at 90-98% CL by MiniBooNE.

• Reactor disappearance experiments

- \Rightarrow Lower E and longer L
- \Rightarrow are more sensitive to lower Δm^2

• Reactor disappearance experiments

- \Rightarrow Lower E and longer L
- \Rightarrow are more sensitive to lower Δm^2
- Accelerator appearance experiments
 - \Rightarrow higher E shorter L more precision
 - \Rightarrow better limits on mixing

- Reactor disappearance experiments
 - \Rightarrow Lower E and longer L
 - \Rightarrow are more sensitive to lower Δm^2
- Accelerator appearance experiments
 - \Rightarrow higher E shorter L more precision
 - \Rightarrow better limits on mixing

• To reach small $\Delta m^2 \gtrsim 10^{-4} \text{ eV}^2$ \Rightarrow very large L and intermediate E \Rightarrow Long Baseline Exp at Accelerators

- Reactor disappearance experiments
 ⇒ Lower E and longer L
 - \Rightarrow are more sensitive to lower Δm^2
- Accelerator appearance experiments
 - \Rightarrow higher E shorter L more precision
 - \Rightarrow better limits on mixing

- To reach small $\Delta m^2 \gtrsim 10^{-4} \text{ eV}^2$ \Rightarrow very large L and intermediate E \Rightarrow Long Baseline Exp at Accelerators
- To reach smaller $\Delta m^2 \gtrsim 10^{-5} \text{ eV}^2$ \Rightarrow Long Baseline Exp at Reactors

Physics of ATM Test at Long Baseline Experiments

alez-Garcia

K2K	$ u_{\mu}$ at KEK	SK	L=250 km
MINOS	$ u_{\mu}$ at Fermilab	Soundan	L=735 km
Opera	$ u_{\mu}$ at CERN	Gran Sasso	L=740 km

Physics of

ATM Test at Long Baseline Experiments

K2K	$ u_{\mu}$ at KEK	SK	L=250 km
MINOS	$ u_{\mu}$ at Fermilab	Soundan	L=735 km
Opera	$ u_{\mu}$ at CERN	Gran Sasso	L=740 km

1 $\tan^2 \theta$ 10

1

0 ⊑ 0.1

Physics of

ATM Test at Long Baseline Experiments

K2K	$ u_{\mu}$ at KEK	SK	L=250 km
MINOS	$ u_{\mu}$ at Fermilab	Soundan	L=735 km
Opera	$ u_{\mu}$ at CERN	Gran Sasso	L=740 km

Confirmation of ATM oscillations K2K 5 $\Delta m^2 [10^{-3} eV^2]$ 3 2 0 ⊑ 0.1 10

 $\tan^2 \theta$

MINOS 2006: spectral distortion

Altenative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$

Altenative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$
- ν masses are not the only mechanism for oscillations
- Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01 Non universal coupling of neutrinos $\gamma_1 \neq \gamma_2$ to graviational potential ϕ

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97

Non universal asymptotic velocity of neutrinos $c_1 \neq c_2 \Rightarrow E_i = \frac{m_i^2}{2p} + c_i p$

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos $k_1 \neq k_2$ to torsion strength Q

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99 due to CPT violating terms: $\bar{\nu}_L^{\alpha} b_{\mu}^{\alpha\beta} \gamma_{\mu} \nu_L^{\beta} \Rightarrow E_i = \frac{m_i^2}{2p} \pm b_i$ $\lambda = \pm \frac{2\pi}{\Delta h}$

ATM *v*'s: Subdominant NP Effects

$$P_{\nu_{\mu} \to \nu_{\mu}} = 1 - \sin^{2} 2\Theta \sin^{2} \left(\frac{\Delta m^{2} L}{4E} \mathcal{R}\right)$$

$$\mathcal{R} \cos 2\Theta = \cos 2\theta + \sum_{n} R_{n} \cos 2\xi_{n}$$

$$\mathcal{R} \sin 2\Theta = \sin 2\theta + \sum_{n} R_{n} \sin 2\xi_{n} e^{i\eta_{n}}$$

$$R_{n} = \sigma_{n}^{+} \frac{\Delta \delta_{n} E^{n}}{2} \frac{4E}{\Delta m^{2}}$$

$$R_{n} = \sigma_{n}^{+} \frac{\Delta \delta_{n} E^{n}}{2} \frac{4E}{\Delta m^{2}}$$

• Questions:

– Do these effects affect our determination of oscillation parameters?

– Can we limit these effects?

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

ATM *v*'s: Subdominant NP Effects

At 90% CL:
$\frac{ \Delta c }{c} \le 1.2 \times 10^{-24}$
$ \phi\Delta\gamma \le 5.9\times 10^{-25}$
$ \Delta b \le 3.0 imes 10^{-23} \text{ GeV}$
$ Q\Delta k \le 4.8 \times 10^{-23} \text{ GeV}$
$ \varepsilon^d_{\mu\mu} - \varepsilon^d_{\tau\tau} \le 0.012$
$ arepsilon_{\mu au}^d \le 0.038$

Future Bounds on New Physics: ν **Telescopes**

• If $m_{\nu} \neq 0 \rightarrow$ Lepton Mixing \equiv breaking of $L_e \times L_{\mu} \times L_{\tau}$

- If $m_{\nu} \neq 0 \rightarrow$ Lepton Mixing \equiv breaking of $L_e \times L_{\mu} \times L_{\tau}$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$

- If $m_{\nu} \neq 0 \rightarrow$ Lepton Mixing \equiv breaking of $L_e \times L_{\mu} \times L_{\tau}$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$
- Neutrino masses and mixing \Rightarrow Flavour oscillations

- If $m_{\nu} \neq 0 \rightarrow$ Lepton Mixing \equiv breaking of $L_e \times L_{\mu} \times L_{\tau}$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$
- Neutrino masses and mixing \Rightarrow Flavour oscillations
- Experiments observing oscillations \Rightarrow measurement of Δm_{ij}^2 and θ_{ij}

- If $m_{\nu} \neq 0 \rightarrow$ Lepton Mixing \equiv breaking of $L_e \times L_{\mu} \times L_{\tau}$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$
- Neutrino masses and mixing \Rightarrow Flavour oscillations
- Experiments observing oscillations \Rightarrow measurement of Δm_{ij}^2 and θ_{ij}
- Atmospheric, K2K and MINOS (+ negative SBL searches) $\Rightarrow \nu_{\mu} \rightarrow \nu_{\tau}$ with $\Delta m^2 \sim 2 \times 10^{-3} \text{ eV}^2$ and $\tan^2 \theta \sim 1$

- If $m_{\nu} \neq 0 \rightarrow$ Lepton Mixing \equiv breaking of $L_e \times L_{\mu} \times L_{\tau}$
- From direct searches of ν -mass: $m_{\nu} \leq \mathcal{O}(eV)$
- Neutrino masses and mixing \Rightarrow Flavour oscillations
- Experiments observing oscillations \Rightarrow measurement of Δm_{ij}^2 and θ_{ij}
- Atmospheric, K2K and MINOS (+ negative SBL searches) $\Rightarrow \nu_{\mu} \rightarrow \nu_{\tau}$ with $\Delta m^2 \sim 2 \times 10^{-3} \text{ eV}^2$ and $\tan^2 \theta \sim 1$
- Possible alternative oscillation scenarios due to *non-universal* VLI, VWEP, etc... But Strongly Constrained from Existing Oscillation Data