PHYSICS OF

MASSIVE

NEUTRINOS

Concha Gonzalez-Garcia (ICREA-University of Barcelona & YITP-Stony Brook) Nufact07 Summer Institute, July 2007

Plan of Lectures

- **I.** Standard Neutrino Properties and Mass Terms (Beyond Standard)
- **II.** Effects of ν Mass and Neutrino Oscillations (Vacuum)
- **III.** Neutrino Oscillations in Matter
- **IV.** The Emerging Picture and Some Lessons

Plan of Lecture I

Standard Neutrino Properties and Mass Terms (Beyond Standard)

Historical Introduction

The Standard Model of Massless Neutrinos

Mass-related Neutrino Properties: Helicity versus Chirality, Majorana versus Dirac

Neutrino Mass Terms Beyond the SM: Dirac, Majorana, the See-Saw Mechanism ...

• At end of 1800's radioactivity was discovered and three types identified: α , β , γ β : an electron comes out of the radioactive nucleus.

At end of 1800's radioactivity was discovered and three types identified: α, β, γ
 β : an electron comes out of the radioactive nucleus.

• Energy conservation $\Rightarrow e^-$ should have had a fixed energy

 $(A,Z) \rightarrow (A,Z+1) + e^- \Rightarrow E_e = M(A,Z+1) - M(A,Z)$

At end of 1800's radioactivity was discovered and three types identified: α, β, γ
 β : an electron comes out of the radioactive nucleus.

• Energy conservation $\Rightarrow e^-$ should have had a fixed energy

$$(A,Z) \rightarrow (A,Z+1) + e^- \Rightarrow E_e = M(A,Z+1) - M(A,Z)$$

But 1914 James Chadwick

showed that the electron energy spectrum is continuous

At end of 1800's radioactivity was discovered and three types identified: α, β, γ
 β : an electron comes out of the radioactive nucleus.

• Energy conservation $\Rightarrow e^-$ should have had a fixed energy

$$(A,Z) \rightarrow (A,Z+1) + e^- \Rightarrow E_e = M(A,Z+1) - M(A,Z)$$

But 1914 James Chadwick

showed that the electron energy spectrum is continuous

Do we throw away the energy conservation?

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the "Liebe Radioaktive Damen und Herren" (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as "constituent of nuclei", the "neutron" ν , able to explain the continuous spectrum of nuclear beta decay

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the "Liebe Radioaktive Damen und Herren" (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as "constituent of nuclei", the "neutron" ν , able to explain the continuous spectrum of nuclear beta decay

 $(A,Z) \rightarrow (A,Z{+}1){+}e^-{+}\nu$

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the "Liebe Radioaktive Damen und Herren" (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as "constituent of nuclei", the "neutron" ν , able to explain the continuous spectrum of nuclear beta decay

$$(A,Z) \rightarrow (A,Z+1) + e^- + \nu$$

• The ν is light (in Pauli's words: "the mass of the ν should be of the same order as the *e* mass"), neutral and has spin 1/2

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the "Liebe Radioaktive Damen und Herren" (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as "constituent of nuclei", the "neutron" ν , able to explain the continuous spectrum of nuclear beta decay

$$(A,Z) \rightarrow (A,Z+1) + e^- + \nu$$

• The ν is light (in Pauli's words: "the mass of the ν should be of the same order as the *e* mass"), neutral and has spin 1/2

• In order to distinguish them from heavy neutrons, Fermi proposed to name them neutrinos.

• The idea of the neutrino came in 1930, when W. Pauli tried a desperate saving operation of "the energy conservation principle".

In his letter addressed to the "Liebe Radioaktive Damen und Herren" (Dear Radioactive Ladies and Gentlemen), the participants of a meeting in Tubingen. He put forward the hypothesis that a new particle exists as "constituent of nuclei", the "neutron" ν , able to explain the continuous spectrum of nuclear beta decay

$$(A,Z) \to (A,Z+1) + e^- + \nu$$

• The ν is light (in Pauli's words: "the mass of the ν should be of the same order as the *e* mass"), neutral and has spin 1/2

• In order to distinguish them from heavy neutrons, Fermi proposed to name them neutrinos.

Concha Gonzalez-Garcia

First Detection of ν 's

In 1934, Hans Bethe and Rudolf Peierls showed that the cross section between ν and matter should be so small that a ν go through the Earth without deviation

First Detection of ν **'s**

In 1934, Hans Bethe and Rudolf Peierls showed that the cross section between ν and matter should be so small that a ν go through the Earth without deviation

In 1953 Frederick Reines and Clyde Cowan place a neutrino detector near a nuclear plant

First Detection of ν **'s**

In 1934, Hans Bethe and Rudolf Peierls showed that the cross section between ν and matter should be so small that a ν go through the Earth without deviation

In 1953 Frederick Reines and Clyde Cowan place a neutrino detector near a nuclear plant

 e^+ annihilates e^- of the surrounding material giving two simultaneous γ 's. neutron captured by a cadmium nucleus with emission of γ 's some 15 msec after

First Detection of ν **'s**

In 1934, Hans Bethe and Rudolf Peierls showed that the cross section between ν and matter should be so small that a ν go through the Earth without deviation

In 1953 Frederick Reines and Clyde Cowan place a neutrino detector near a nuclear plant

 e^+ annihilates e^- of the surrounding material giving two simultaneous γ 's. neutron captured by a cadmium nucleus with emission of γ 's some 15 msec after

The neutrino was there. Its tag was clearly visible

Concha Gonzalez-Garcia

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^{-} + {}^{152}Eu \rightarrow \nu + {}^{152}Sm^* \rightarrow {}^{152}Sm + \gamma$$

with
$$J(^{152}Eu) = J(^{152}Sm) = 0$$
 and $L(e^{-}) = 0$

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^{-} + {}^{152}Eu \rightarrow \nu + {}^{152}Sm^* \rightarrow {}^{152}Sm + \gamma$$

with
$$J(^{152}Eu) = J(^{152}Sm) = 0$$
 and $L(e^{-}) = 0$

• Angular momentum conservation \Rightarrow

$$\begin{cases} J_{z}(e^{-}) = J_{z}(\nu) + J_{z}(Sm^{*}) \\ = J_{z}(\nu) + J_{z}(\gamma) \\ \frac{+1}{2} = \frac{+1}{2} \quad \pm 1 \Rightarrow J_{z}(\nu) = -\frac{1}{2}J_{z}(\gamma) \end{cases}$$

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^{-} + {}^{152}Eu \rightarrow \nu + {}^{152}Sm^* \rightarrow {}^{152}Sm + \gamma$$

with
$$J(^{152}Eu) = J(^{152}Sm) = 0$$
 and $L(e^{-}) = 0$

- Angular momentum conservation \Rightarrow $\begin{cases}
 J_z(e^-) = J_z(\nu) + J_z(Sm^*) \\
 = J_z(\nu) + J_z(\gamma) \\
 \frac{\pm 1}{2} = \frac{\pm 1}{2} \frac{\pm 1}{2} \quad \pm 1 \Rightarrow \quad J_z(\nu) = -\frac{1}{2}J_z(\gamma)
 \end{cases}$
- Nuclei are heavy $\Rightarrow \vec{p}(^{152}Eu) \simeq \vec{p}(^{152}Sm) \simeq \vec{p}(^{152}Sm^*) = 0$

So momentum conservation $\Rightarrow \vec{p}(\nu) = -\vec{p}(\gamma) \Rightarrow \nu$ helicity= γ helicity

- The neutrino helicity was measured in 1957 in a experiment by Goldhaber et al.
- Using the electron capture reaction

$$e^{-} + {}^{152}Eu \rightarrow \nu + {}^{152}Sm^* \rightarrow {}^{152}Sm + \gamma$$

with
$$J(^{152}Eu) = J(^{152}Sm) = 0$$
 and $L(e^{-}) = 0$

- Angular momentum conservation \Rightarrow $\begin{cases}
 J_z(e^-) = J_z(\nu) + J_z(Sm^*) \\
 = J_z(\nu) + J_z(\gamma) \\
 \frac{\pm 1}{2} = \frac{\pm 1}{2} \quad \pm 1 \Rightarrow \quad J_z(\nu) = -\frac{1}{2}J_z(\gamma)
 \end{cases}$
- Nuclei are heavy $\Rightarrow \vec{p}(^{152}Eu) \simeq \vec{p}(^{152}Sm) \simeq \vec{p}(^{152}Sm^*) = 0$ So momentum conservation $\Rightarrow \vec{p}(\nu) = -\vec{p}(\gamma) \Rightarrow \nu$ helicity= γ helicity
- Goldhaber et al found γ had negative helicity $\Rightarrow \nu$ has helicity -1

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and e-

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and $e \rightarrow$ Conclusion: ν_{μ} is a different particle

 ν coming out of a nuclear reactor is $\overline{\nu}_e$ because it is emitted together with an e^-

Question: Is it different from the muon type neutrino ν_{μ} that could be associated to the muon? Or is this difference a theoretical arbitrary convention?

In 1959 M. Schwartz thought of producing an intense ν beam from π 's decay (produced when a proton beam of GeV energy hits matter) protons Schwartz, Lederman, Steinberger and Gaillard built a spark chamber (a 10 tons of neon gas) to detect ν_{μ}

They observe 40 ν interactions: in 6 an e^- comes out and in 34 a μ^- comes out.

If $\nu_{\mu} \equiv \nu_{e} \Rightarrow$ equal numbers of μ^{-} and $e \rightarrow$ Conclusion: ν_{μ} is a different particle

In 1977 Martin Perl discovers the particle tau \equiv the third lepton family.

The ν_{τ} was observed by DONUT experiment at FNAL in 1998 (officially in Dec. 2000).

Sources of ν 's

Concha Gonzalez-Garcia

• The SM is a gauge theory based on the symmetry group

```
SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}
```

• The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

• 3 Generations of Fermions:

$(1, 2, -\frac{1}{2})$	$(3, 2, \frac{1}{6})$	(1, 1, -1)	$(3, 1, \frac{2}{3})$	$(3, 1, -\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L$	$\left(\begin{array}{c} u^i \\ d^i \end{array} ight)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\mu}} \\ \mu \end{array} \right)_L$	$\left(\begin{array}{c} c^i\\ s^i\end{array}\right)_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array} ight)_L$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L$	$ au_R$	t_R^i	b_R^i

• The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

• 3 Generations of Fermions:

$(1, 2, -\frac{1}{2})$	$(3, 2, \frac{1}{6})$	(1, 1, -1)	$(3, 1, \frac{2}{3})$	$(3, 1, -\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L$	$\left(\begin{array}{c} u^i \\ d^i \end{array}\right)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\mu}} \\ \mu \end{array} \right)_L$	$\left(\begin{array}{c} c^i\\ s^i\end{array} ight)_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array} ight)_L$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L$	$ au_R$	t_R^i	b_R^i

• Spin-0 particle ϕ : $(1, 2, \frac{1}{2})$

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \xrightarrow{SSB} \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v+h \end{array}\right)$$

• The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

• 3 Generations of Fermions:

$(1, 2, -\frac{1}{2})$	$(3, 2, \frac{1}{6})$	(1, 1, -1)	$(3, 1, \frac{2}{3})$	$(3, 1, -\frac{1}{3})$
L_L	Q_L^i	E_R	U_R^i	D_R^i
$\left(\begin{array}{c} \nu_e \\ e \end{array}\right)_L$	$\left(\begin{array}{c} u^i \\ d^i \end{array} \right)_L$	e_R	u_R^i	d_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\mu}} \\ \mu \end{array} ight)_L$	$\left(\begin{array}{c}c^i\\s^i\end{array}\right)_L$	μ_R	c_R^i	s_R^i
$\left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array} ight)_L$	$\left(\begin{array}{c}t^i\\b^i\end{array}\right)_L$	$ au_R$	t_R^i	b_R^i

• Spin-0 particle ϕ : $(1, 2, \frac{1}{2})$

$$\phi = \left(\begin{array}{c} \phi^+ \\ \phi^0 \end{array}\right) \xrightarrow{SSB} \frac{1}{\sqrt{2}} \left(\begin{array}{c} 0 \\ v+h \end{array}\right)$$

 $Q_{EM} = T_{L3} + Y$

- ν 's are $T_{L3} = \frac{1}{2}$ components lepton doublet L_L
- ν 's have no strong or EM interactions
- No ν_R (they are singlets of gauge group)

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$\sum_{k=1}^{3} + \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} - g' \frac{Y}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q}_{L,k} (i\tau_{2}) \phi U_{R,k'} + \lambda_{kk'}^{d} \overline{Q}_{L,k} \phi D_{R,k'} + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right)$$

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$\sum_{k=1}^{3} + \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} - g' \frac{Y}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q}_{L,k} (i\tau_{2}) \phi U_{R,k'} + \lambda_{kk'}^{d} \overline{Q}_{L,k} \phi D_{R,k'} + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right)$$

• Invariant under global rotations

$$q_i \to e^{i\alpha_B/3}q_i \qquad l_i \to e^{i\alpha_{L_i}/3}l_i \qquad \nu_i \to e^{i\alpha_{L_i}/3}\nu_i$$

SM Fermion Lagrangian

$$\mathcal{L} = \sum_{k=1}^{3} \sum_{i,j=1}^{3} \overline{Q_{L}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g \frac{\tau_{a}}{2} \delta_{ij} W_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) Q_{L,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{U_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) U_{R,k}^{j}$$

$$\sum_{k=1}^{3} \sum_{i,j=1}^{3} + \overline{D_{R,k}^{i}} \gamma^{\mu} \left(i\partial_{\mu} - g_{s} \frac{\lambda_{a,ij}}{2} G_{\mu}^{a} - g' \frac{Y}{2} \delta_{ij} B_{\mu} \right) D_{R,k}^{j}$$

$$\sum_{k=1}^{3} + \overline{L_{L,k}} \gamma^{\mu} \left(i\partial_{\mu} - g \frac{\tau_{i}}{2} W_{\mu}^{i} - g' \frac{Y}{2} B_{\mu} \right) L_{L,k} + \overline{E_{R,k}} \gamma^{\mu} \left(i\partial_{\mu} - g' \frac{Y}{2} B_{\mu} \right) E_{R,k}$$

$$- \sum_{k,k'=1}^{3} \left(\lambda_{kk'}^{u} \overline{Q}_{L,k} (i\tau_{2}) \phi U_{R,k'} + \lambda_{kk'}^{d} \overline{Q}_{L,k} \phi D_{R,k'} + \lambda_{kk'}^{l} \overline{L}_{L,k} \phi E_{R,k'} + h.c. \right)$$

• Invariant under global rotations

 $q_i \to e^{i\alpha_B/3} q_i \qquad l_i \to e^{i\alpha_{L_i}/3} l_i \qquad \nu_i \to e^{i\alpha_{L_i}/3} \nu_i$

- \Rightarrow Accidental (\equiv not imposed) global symmetry: $B \times L_e \times L_\mu \times L_\tau$
- \Rightarrow Each lepton flavour, L_i , is conserved
- \Rightarrow Total lepton number $L = L_e + L_\mu + L_\tau$ is conserved
Number of Neutrinos

• The counting of light active left-handed neutrinos is based on the family structure of the SM assuming a universal diagonal NC coupling:

Number of Neutrinos

• The counting of light active left-handed neutrinos is based on the family structure of the SM assuming a universal diagonal NC coupling:

• For $m_{\nu_i} < m_Z/2$ one can use the total Z-width Γ_Z to extract N_{ν}

$$\begin{split} \boldsymbol{N}_{\boldsymbol{\nu}} &= \frac{\Gamma_{\text{inv}}}{\Gamma_{\boldsymbol{\nu}}} \equiv \frac{1}{\Gamma_{\boldsymbol{\nu}}} (\Gamma_{Z} - \Gamma_{h} - 3\Gamma_{\ell}) \\ &= \frac{\Gamma_{\ell}}{\Gamma_{\boldsymbol{\nu}}} \left[\sqrt{\frac{12\pi R_{h\ell}}{\sigma_{h}^{0} m_{Z}^{2}}} - R_{h\ell} - 3 \right] \end{split}$$

 Γ_{inv} = the invisible width Γ_h = the total hadronic width Γ_l = width to charged lepton

Number of Neutrinos

• The counting of light active left-handed neutrinos is based on the family structure of the SM assuming a universal diagonal NC coupling:

 $\sum_{\alpha} \int_{\overline{\mathbf{v}}} \mathbf{v} = \sum_{\alpha} \bar{\nu}_{\alpha L} \gamma^{\mu} \nu_{\alpha L}$

• For $m_{\nu_i} < m_Z/2$ one can use the total Z-width Γ_Z to extract N_{ν}

$$\begin{split} \mathbf{N}_{\boldsymbol{\nu}} &= \frac{\Gamma_{\text{inv}}}{\Gamma_{\boldsymbol{\nu}}} \equiv \frac{1}{\Gamma_{\boldsymbol{\nu}}} (\Gamma_Z - \Gamma_h - 3\Gamma_\ell) \\ &= \frac{\Gamma_\ell}{\Gamma_{\boldsymbol{\nu}}} \left[\sqrt{\frac{12\pi R_{h\ell}}{\sigma_h^0 m_Z^2}} - R_{h\ell} - 3 \right] \end{split}$$

 Γ_{inv} = the invisible width Γ_h = the total hadronic width Γ_l = width to charged lepton

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{L}_{L} M^{\ell} E_{R} + \text{h.c.}$$

 $M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v \equiv$ Dirac mass matrix for charged leptons

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{L}_{L} M^{\ell} E_{R} + \text{h.c.}$$

 $M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v \equiv \text{Dirac mass matrix}$ for charged leptons

• ν 's do not participate in QED or QCD and only ν_L is relevant for weak interactions \Rightarrow there is no *dynamical* reason for introducing ν_R , so

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{L}_{L} M^{\ell} E_{R} + \text{h.c.}$$

 $M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v \equiv$ Dirac mass matrix for charged leptons

• ν 's do not participate in QED or QCD and only ν_L is relevant for weak interactions \Rightarrow there is no *dynamical* reason for introducing ν_R , so

In SM Neutrinos are Strictly Massless

Concha Gonzalez-Garcia

• We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2}$

$$\boldsymbol{\psi} = \psi_L + \psi_R \qquad \psi_L = \frac{1 - \gamma_5}{2} \boldsymbol{\psi} \qquad \psi_R = \frac{1 + \gamma_5}{2} \boldsymbol{\psi}$$

• We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2}$

$$\boldsymbol{\psi} = \psi_L + \psi_R \qquad \psi_L = \frac{1 - \gamma_5}{2} \boldsymbol{\psi} \qquad \psi_R = \frac{1 + \gamma_5}{2} \boldsymbol{\psi}$$

• In the SM the neutrino interaction terms

$$\mathcal{L}_{int} = \frac{i g}{\sqrt{2}} [j^+_{\mu} W^-_{\mu} + j^-_{\mu} W^+_{\mu}] + \frac{i g}{\sqrt{2} \cos \theta_W} j^Z_{\mu} Z_{\mu}$$

$$j_{\mu}^{-} = \bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha} \quad \alpha = e, \mu, \tau \quad j_{\mu}^{+} = j_{\mu}^{-\dagger} \quad j_{\mu}^{Z} = \bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha}$$

• We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2}$

$$\boldsymbol{\psi} = \psi_L + \psi_R \qquad \psi_L = \frac{1 - \gamma_5}{2} \boldsymbol{\psi} \qquad \psi_R = \frac{1 + \gamma_5}{2} \boldsymbol{\psi}$$

• In the SM the neutrino interaction terms

$$\mathcal{L}_{int} = \frac{i\,g}{\sqrt{2}} [j^+_{\mu} W^-_{\mu} + j^-_{\mu} W^+_{\mu}] + \frac{i\,g}{\sqrt{2}\cos\theta_W} j^Z_{\mu} Z_{\mu}$$

$$j_{\mu}^{-} = \bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha} \quad \alpha = e, \mu, \tau \quad j_{\mu}^{+} = j_{\mu}^{-\dagger} \quad j_{\mu}^{Z} = \bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha}$$

- $\Rightarrow \nu_L$ interact and ν_R do not interact
- \Rightarrow chirality states are physical states for weak interactions

• We define the chiral projections $P_{R,L} = \frac{1 \pm \gamma_5}{2}$

$$\boldsymbol{\psi} = \psi_L + \psi_R \qquad \psi_L = \frac{1 - \gamma_5}{2} \boldsymbol{\psi} \qquad \psi_R = \frac{1 + \gamma_5}{2} \boldsymbol{\psi}$$

• In the SM the neutrino interaction terms

$$\mathcal{L}_{int} = \frac{i g}{\sqrt{2}} [j^+_{\mu} W^-_{\mu} + j^-_{\mu} W^+_{\mu}] + \frac{i g}{\sqrt{2} \cos \theta_W} j^Z_{\mu} Z_{\mu}$$

$$j_{\mu}^{-} = \bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha} \quad \alpha = e, \mu, \tau \quad j_{\mu}^{+} = j_{\mu}^{-\dagger} \quad j_{\mu}^{Z} = \bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha}$$

- $\Rightarrow \nu_L$ interact and ν_R do not interact
- \Rightarrow chirality states are physical states for weak interactions
- \bullet However what Goldhaber measured was the helicity not the chirality of ν

Concha Gonzalez-Garcia

• The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial - m)\psi(x)$

- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- The Equation of Motion is: $i \frac{\partial}{\partial t} \psi = H \psi = \gamma^0 (\vec{\gamma} \cdot \vec{p} + m) \psi$

 $\left(\right)$

Helicity versus Chirality

- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- The Equation of Motion is: $i \frac{\partial}{\partial t} \psi = H \psi = \gamma^0 (\vec{\gamma} \cdot \vec{p} + m) \psi$
- In momentum space this equation has 4 possible solutions

$$(\gamma \cdot \boldsymbol{p} - m)u_s(\vec{p}) = 0$$
 $(\gamma \cdot \boldsymbol{p} + m)v_s(\vec{p}) =$

 $s = \pm \frac{1}{2}$ and $u_s(\vec{p})$ and $v_s(\vec{p})$ are the four component Dirac spinors.

- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- The Equation of Motion is: $i \frac{\partial}{\partial t} \psi = H \psi = \gamma^0 (\vec{\gamma} \cdot \vec{p} + m) \psi$
- In momentum space this equation has 4 possible solutions

$$(\gamma \cdot \mathbf{p} - m)u_s(\vec{p}) = 0$$
 $(\gamma \cdot \mathbf{p} + m)v_s(\vec{p}) = 0$

 $s = \pm \frac{1}{2}$ and $u_s(\vec{p})$ and $v_s(\vec{p})$ are the four component Dirac spinors.

• For this free fermion $[H, \vec{J}]=0$ and $[\vec{p}, \vec{J}.\vec{p}]=0$ with $\vec{J} = \vec{L} + \frac{\vec{\sigma}}{2}$ $(\sigma^i = -\gamma^0 \gamma^5 \gamma^i)$

- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- The Equation of Motion is: $i \frac{\partial}{\partial t} \psi = H \psi = \gamma^0 (\vec{\gamma} \cdot \vec{p} + m) \psi$
- In momentum space this equation has 4 possible solutions

$$(\gamma \cdot \boldsymbol{p} - m)u_s(\vec{p}) = 0$$
 $(\gamma \cdot \boldsymbol{p} + m)v_s(\vec{p}) = 0$

 $s = \pm \frac{1}{2}$ and $u_s(\vec{p})$ and $v_s(\vec{p})$ are the four component Dirac spinors.

- For this free fermion $[H, \vec{J}]=0$ and $[\vec{p}, \vec{J}.\vec{p}]=0$ with $\vec{J} = \vec{L} + \frac{\vec{\sigma}}{2}$ $(\sigma^i = -\gamma^0 \gamma^5 \gamma^i)$
 - \Rightarrow we can chose $u_s(\vec{p})$ and $v_s(\vec{p})$ to be eigenstates also of the helicity projector

$$P_{\pm} = \frac{1 \pm 2\vec{J}\frac{\vec{p}}{|p|}}{2} = \frac{1 \pm \vec{\sigma}\frac{\vec{p}}{|p|}}{2}$$

- The Lagrangian of a massive free fermion ψ is $\mathcal{L} = \overline{\psi}(x)(i\gamma \cdot \partial m)\psi(x)$
- The Equation of Motion is: $i \frac{\partial}{\partial t} \psi = H \psi = \gamma^0 (\vec{\gamma} \cdot \vec{p} + m) \psi$
- In momentum space this equation has 4 possible solutions

$$(\gamma \cdot \mathbf{p} - m)u_s(\vec{p}) = 0$$
 $(\gamma \cdot \mathbf{p} + m)v_s(\vec{p}) = 0$

 $s = \pm \frac{1}{2}$ and $u_s(\vec{p})$ and $v_s(\vec{p})$ are the four component Dirac spinors.

- For this free fermion $[H, \vec{J}]=0$ and $[\vec{p}, \vec{J}.\vec{p}]=0$ with $\vec{J} = \vec{L} + \frac{\vec{\sigma}}{2}$ $(\sigma^i = -\gamma^0 \gamma^5 \gamma^i)$
 - \Rightarrow we can chose $u_s(\vec{p})$ and $v_s(\vec{p})$ to be eigenstates also of the helicity projector

$$P_{\pm} = \frac{1 \pm 2\vec{J}\frac{\vec{p}}{|p|}}{2} = \frac{1 \pm \vec{\sigma}\frac{\vec{p}}{|p|}}{2}$$

Only for massless fermions Helicity and chirality states are the same.

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?

* <u>ANSWER 1</u>: ν different from anti- ν

 $\Rightarrow \nu$ is a *Dirac* particle (like *e*)

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * <u>ANSWER 1</u>: ν different from anti- $\nu \Rightarrow \nu$ is a *Dirac* particle (like *e*)

 $\Rightarrow \text{ It is described by a Dirac field } \nu(x) = \sum_{s,\vec{x}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- \Rightarrow OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * <u>ANSWER 1</u>: ν different from anti- $\nu \Rightarrow \nu$ is a *Dirac* particle (like *e*)

 $\Rightarrow \text{ It is described by a Dirac field } \nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

 \Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$\nu^{C} = \mathcal{C} \,\nu \,\mathcal{C}^{-1} = \eta^{\star}_{C} \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a^{\dagger}_{s}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = -\eta^{\star}_{C} \,\mathcal{C} \,\overline{\nu}^{T}$$
$$(\mathcal{C} = i\gamma^{2}\gamma^{0})$$

which contain two sets of creation-annihilation operators

Dirac versus Majorana Neutrinos

- In the SM neutral bosons can be of two type:
 - Their own antiparticle such as γ , π^0 ...
 - Different from their antiparticle such as K^0, \overline{K}^0 ...
- In the SM ν are the only *neutral fermions*
- ⇒ OPEN QUESTION: are neutrino and antineutrino the same or different particles?
 - * <u>ANSWER 1</u>: ν different from anti- $\nu \Rightarrow \nu$ is a *Dirac* particle (like *e*)

 $\Rightarrow \text{ It is described by a Dirac field } \nu(x) = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$

 \Rightarrow And the charged conjugate neutrino field \equiv the antineutrino field

$$\nu^{C} = \mathcal{C} \,\nu \,\mathcal{C}^{-1} = \eta^{\star}_{C} \sum_{s,\vec{p}} \left[b_{s}(\vec{p}) u_{s}(\vec{p}) e^{-ipx} + a^{\dagger}_{s}(\vec{p}) v_{s}(\vec{p}) e^{ipx} \right] = -\eta^{\star}_{C} \,\mathcal{C} \,\overline{\nu}^{T}$$
$$(\mathcal{C} = i\gamma^{2}\gamma^{0})$$

which contain two sets of creation-annihilation operators

 \Rightarrow These two fields can rewritten in terms of 4 chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$ with $\nu = \nu_L + \nu_R$ and $\nu^C = (\nu_L)^C + (\nu_R)^C$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

$$\Rightarrow \eta_C^{\star} \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

$$\Rightarrow \eta_C^{\star} \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{ So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + \eta_C^{\star} a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

$$\Rightarrow \eta_C^{\star} \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + \eta_C^{\star} a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 $\Rightarrow A \text{ Majorana particle can be described with only 2 independent chiral fields:}$ $<math>\nu_L \text{ and } (\nu_L)^C \text{ which verify } \nu_L = (\nu_R)^C (\nu_L)^C = \nu_R$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

$$\Rightarrow \eta_C^{\star} \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + \eta_C^{\star} a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

- $\Rightarrow A \text{ Majorana particle can be described with only 2 independent chiral fields:}$ $<math>\nu_L \text{ and } (\nu_L)^C \text{ which verify } \nu_L = (\nu_R)^C (\nu_L)^C = \nu_R$
- In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i\,g}{\sqrt{2}} \left[(\bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})W_{\mu}^{-} + (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}l_{\alpha})W_{\mu}^{+} \right] + \frac{i\,g}{\sqrt{2}\cos\theta_{W}} (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})Z_{\mu}$$

Only involves two chiral fields $P_L \nu = \nu_L$ and $\overline{\nu} P_R = \eta_C (\nu_L)^{C^T} C^{\dagger}$

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

$$\Rightarrow \eta_C^{\star} \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{ So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + \eta_C^{\star} a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 $\Rightarrow \text{A Majorana particle can be described with only 2 independent chiral fields:}$ $<math>\nu_L \text{ and } (\nu_L)^C \text{ which verify } \nu_L = (\nu_R)^C (\nu_L)^C = \nu_R$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i\,g}{\sqrt{2}} \left[(\bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})W_{\mu}^{-} + (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}l_{\alpha})W_{\mu}^{+} \right] + \frac{i\,g}{\sqrt{2}\cos\theta_{W}} (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})Z_{\mu}$$

Only involves two chiral fields $P_L \nu = \nu_L$ and $\overline{\nu} P_R = \eta_C (\nu_L)^{C^T} C^{\dagger}$

 \Rightarrow Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

* <u>ANSWER 2</u>: ν same as anti- $\nu \Rightarrow \nu$ is a *Majorana* particle : $\nu_M = \nu_M^C$

$$\Rightarrow \eta_C^{\star} \sum_{s,\vec{p}} \left[b_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right] = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + b_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$$

 $\Rightarrow \text{ So we can rewrite the field } \nu_M = \sum_{s,\vec{p}} \left[a_s(\vec{p}) u_s(\vec{p}) e^{-ipx} + \eta_C^{\star} a_s^{\dagger}(\vec{p}) v_s(\vec{p}) e^{ipx} \right]$ which contains only one set of creation–annihilation operators

 $\Rightarrow \text{A Majorana particle can be described with only 2 independent chiral fields:}$ $<math>\nu_L \text{ and } (\nu_L)^C \text{ which verify } \nu_L = (\nu_R)^C (\nu_L)^C = \nu_R$

• In the SM the interaction term for neutrinos

$$\mathcal{L}_{int} = \frac{i\,g}{\sqrt{2}} \left[(\bar{l}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})W_{\mu}^{-} + (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}l_{\alpha})W_{\mu}^{+} \right] + \frac{i\,g}{\sqrt{2}\cos\theta_{W}} (\bar{\nu}_{\alpha}\gamma_{\mu}P_{L}\nu_{\alpha})Z_{\mu}$$

Only involves two chiral fields $P_L \nu = \nu_L$ and $\overline{\nu} P_R = \eta_C (\nu_L)^{C^T} C^{\dagger}$

 \Rightarrow Weak interaction cannot distinguish if neutrinos are Dirac or Majorana

The difference arises from the mass term

ν Mass Terms

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

ν Mass Terms

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

ν Mass Terms

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{L}_{L} M^{(\ell)} E_{R} + \text{h.c.}$$

 $M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v \equiv$ Dirac mass matrix for charged leptons
ν Mass Terms

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{L}_{L} M^{(\ell)} E_{R} + \text{h.c.}$$

 $M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v \equiv$ Dirac mass matrix for charged leptons

• ν 's do not participate in QED or QCD and only ν_L is relevant for weak interactions \Rightarrow there is no *dynamical* reason for introducing ν_R , so

ν Mass Terms

• A fermion mass can be seen as at a Left-Right transition

 $m_f \overline{f_L} f_R + h.c.$ (this is not $SU(2)_L$ gauge invariant)

• In the Standard Model mass comes from *spontaneous symmetry breaking* via Yukawa interaction of the left-handed doublet L_L with the right-handed singlet E_R :

 $\mathcal{L}_{Y}^{l} = -\frac{\lambda_{ij}^{l}\overline{L}_{Li}E_{Rj}\phi}{+ \text{h.c.}} \quad \phi = \text{the scalar doublet}$

• After spontaneous symmetry breaking

$$\phi \xrightarrow{SSB} \left\{ \begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array} \right\} \Rightarrow \mathcal{L}_{\text{mass}}^{l} = -\bar{L}_{L} M^{(\ell)} E_{R} + \text{h.c.}$$

 $M^{\ell} = \frac{1}{\sqrt{2}} \lambda^{l} v \equiv$ Dirac mass matrix for charged leptons

• ν 's do not participate in QED or QCD and only ν_L is relevant for weak interactions \Rightarrow there is no *dynamical* reason for introducing ν_R , so

How can we generate a mass for the neutrino?

OPTION 1:

• One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

OPTION 1:

• One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

$$M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$$
 =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

OPTION 1:

• One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}{}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu}_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

• $\mathcal{L}_{\text{mass}}^{(\text{Dirac})}$ involves the four chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$

OPTION 1:

• One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu_k} \nu_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

• $\mathcal{L}_{\text{mass}}^{(\text{Dirac})}$ involves the four chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$

 $\Rightarrow \text{The eigenstates of } M_D^{\nu} \text{ are Dirac particles (same as quarks and charged leptons)}$ $\nu^D = V^{\nu \dagger} \nu_L + V_R^{\nu \dagger} \nu_R$

OPTION 1:

• One introduces ν_R which can couple to the lepton doublet by Yukawa interaction

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\nu_{Ri}} L_{Lj} \widetilde{\phi}^{\dagger} + \text{h.c.} \qquad (\widetilde{\phi} = i\tau_2 \phi^*)$$

• Under spontaneous symmetry-breaking $\mathcal{L}_Y^{(\nu)} \Rightarrow \mathcal{L}_{\mathrm{mass}}^{(\mathrm{Dirac})}$

$$\mathcal{L}_{\text{mass}}^{(\text{Dirac})} = -\overline{\nu_R} M_D^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} (\overline{\nu_R} M_D^{\nu} \nu_L + \overline{(\nu_L)^c} M_D^{\nu}^T (\nu_R)^c) + \text{h.c.} \equiv -\sum_k m_k \overline{\nu_k} \nu_k^D \nu_k^D$$

 $M_D^{\nu} = \frac{1}{\sqrt{2}} \lambda^{\nu} v$ =Dirac mass for neutrinos $V_R^{\nu \dagger} M_D V^{\nu} = \text{diag}(m_1, m_2, m_3)$

• $\mathcal{L}_{\text{mass}}^{(\text{Dirac})}$ involves the four chiral fields ν_L , ν_R , $(\nu_L)^C$, $(\nu_R)^C$

 $\Rightarrow \text{The eigenstates of } M_D^{\nu} \text{ are Dirac particles (same as quarks and charged leptons)}$ $\nu^D = V^{\nu\dagger} \nu_L + V_R^{\nu\dagger} \nu_R$

 \Rightarrow Total Lepton number is conserved by construction (not accidentally):

$$U(1)_L \nu = e^{i\alpha} \nu \quad \text{and} \quad U(1)_L \overline{\nu} = e^{-i\alpha} \overline{\nu}$$
$$U(1)_L \nu^C = e^{-i\alpha} \nu^C \quad \text{and} \quad U(1)_L \overline{\nu^C} = e^{i\alpha} \overline{\nu^C}$$

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

OPTION 2:

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for neutrinos is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

OPTION 2:

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for neutrinos is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 \bullet But under any U(1) symmetry

$$U(1) \nu^{c} = e^{-i\alpha} \nu^{c}$$
 and $U(1) \overline{\nu} = e^{-i\alpha} \overline{\nu}$

OPTION 2:

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for neutrinos is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 \bullet But under any U(1) symmetry

$$U(1) \nu^{c} = e^{-i\alpha} \nu^{c}$$
 and $U(1) \overline{\nu} = e^{-i\alpha} \overline{\nu}$

 \Rightarrow it can only appear for particles without electric charge

 \Rightarrow Total Lepton Number is not conserved

 $\Rightarrow \text{The eigenstates of } M_M^{\nu} \text{ are Majorana particles}$ $\nu^M = V^{\nu\dagger} \nu_L + (V^{\nu\dagger} \nu_L)^c \text{ (verify } \nu_i^M \nu_i^C = \nu_i^M \text{)}$

OPTION 2:

• One does not introduce ν_R but uses that the field $(\nu_L)^c$ is right-handed, so that one can write a Lorentz-invariant mass term

$$\mathcal{L}_{\text{mass}}^{(\text{Maj})} = -\frac{1}{2} \overline{\nu_L^c} M_M^{\nu} \nu_L + \text{h.c.} \equiv -\frac{1}{2} \sum_k m_k \overline{\nu}_i^M \nu_i^M$$

 M_M^{ν} =Majorana mass for neutrinos is symmetric $V^{\nu T} M_M V^{\nu} = \text{diag}(m_1, m_2, m_3)$

 \bullet But under any U(1) symmetry

$$U(1) \nu^{c} = e^{-i\alpha} \nu^{c}$$
 and $U(1) \overline{\nu} = e^{-i\alpha} \overline{\nu}$

 \Rightarrow it can only appear for particles without electric charge

 \Rightarrow Total Lepton Number is not conserved

 $\Rightarrow \text{The eigenstates of } M_M^{\nu} \text{ are Majorana particles}$ $\nu^M = V^{\nu\dagger} \nu_L + (V^{\nu\dagger} \nu_L)^c \text{ (verify } \nu_i^M \nu_i^C = \nu_i^M \text{)}$

 \Rightarrow But $SU(2)_L$ gauge invariance is broken!!!

OPTION 3:

• Introduce ν_{R_i} (i = 1, m) and write all Lorentz and $SU(2)_L$ invariant mass term

$$\mathcal{L}_{Y}^{(\nu)} = -\frac{\lambda_{ij}^{\nu}}{\nu_{R,i}} L_{L,j} \widetilde{\phi}^{\dagger} - \frac{1}{2} \overline{\nu_{R,i}} M_{N,ij}^{\nu} \nu_{R,j}^{c} + \text{h.c.}$$

OPTION 3:

• Introduce ν_{R_i} (i = 1, m) and write all Lorentz and $SU(2)_L$ invariant mass term

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{R,i}} L_{L,j} \widetilde{\phi}^{\dagger} - \frac{1}{2} \overline{\nu_{R,i}} M_{N,ij}^{\nu} \nu_{R,j}^{c} + \text{h.c.}$$

• After spontaneous symmetry-breaking

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu}_R M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu}_C M^\nu \overline{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

OPTION 3:

• Introduce ν_{R_i} (i = 1, m) and write all Lorentz and $SU(2)_L$ invariant mass term

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{R,i}} L_{L,j} \widetilde{\phi}^{\dagger} - \frac{1}{2} \overline{\nu_{R,i}} M_{N,ij}^{\nu} \nu_{R,j}^{c} + \text{h.c.}$$

• After spontaneous symmetry-breaking

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu_R} M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu_C} M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

• $\mathcal{L}_{\text{mass}}^{(\nu)} = -\sum_{k} \frac{1}{2} m_k \overline{\nu}_k^M \nu_k^M$ where $V^{\nu T} M^{\nu} V^{\nu} = \text{diag}(m_1, m_2, \dots, m_{3+m})$

OPTION 3:

• Introduce ν_{R_i} (i = 1, m) and write all Lorentz and $SU(2)_L$ invariant mass term

$$\mathcal{L}_{Y}^{(\nu)} = -\lambda_{ij}^{\nu} \overline{\nu_{R,i}} L_{L,j} \widetilde{\phi}^{\dagger} - \frac{1}{2} \overline{\nu_{R,i}} M_{N,ij}^{\nu} \nu_{R,j}^{c} + \text{h.c.}$$

• After spontaneous symmetry-breaking

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu_R} M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu}_C^c M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

•
$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\sum_{k} \frac{1}{2} m_k \overline{\nu}_k^M \nu_k^M$$
 where $V^{\nu T} M^{\nu} V^{\nu} = \text{diag}(m_1, m_2, \dots, m_{3+m})$

• In general if $M_N \neq 0 \Rightarrow 3+m$ Majorana neutrino states

$$\nu^{M} = V^{\nu \dagger} \nu_{L} + (V^{\nu \dagger} \nu_{L})^{c} \text{ (verify } \nu^{M}{}_{i}^{c} = \nu^{M}_{i} \text{)}$$

 \Rightarrow Total Lepton Number is not conserved

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

• A particular realization of OPTION 3: Add $m \nu_{R_i}$ so

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu_R} M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu^c} M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

• A particular realization of OPTION 3: Add $m \nu_{R_i}$ so

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu_R} M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu_C} M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

• Assume $M_N \gg m_D \Rightarrow$

• A particular realization of OPTION 3: Add $m \nu_{R_i}$ so

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu_R} M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu_C} M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

• Assume $M_N \gg m_D \Rightarrow$

- 3 light neutrinos ν 's of mass $m_{\nu_l} \simeq M_D^T M_N^{-1} M_D$

-m Heavy ν 's of mass $m_{\nu_H} \simeq M_N$

• A particular realization of OPTION 3: Add $m \nu_{R_i}$ so

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu}_R M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu}_R^c M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

• Assume $M_N \gg m_D \Rightarrow$

- 3 light neutrinos ν 's of mass $m_{\nu_l} \simeq M_D^T M_N^{-1} M_D$

- -m Heavy ν 's of mass $m_{\nu_H} \simeq M_N$
- The heavier ν_H the lighter $\nu_l \Rightarrow$ See-Saw Mechanism
- Natural explanation to $m_{\nu} \ll m_l, m_q$

• A particular realization of OPTION 3: Add $m \nu_{R_i}$ so

$$\mathcal{L}_{\text{mass}}^{(\nu)} = -\overline{\nu}_R M_D \nu_L - \frac{1}{2} \overline{\nu}_R M_N \nu_R^c + \text{h.c.} \equiv -\frac{1}{2} \overline{\nu}_R^c M^\nu \vec{\nu} + \text{h.c.}$$

with $\vec{\nu} = \begin{pmatrix} \nu_L \\ \nu_R^c \end{pmatrix}$ and $M^\nu = \begin{pmatrix} 0 & M_D^T \\ M_D & M_N \end{pmatrix}$

• Assume $M_N \gg m_D \Rightarrow$

- 3 light neutrinos ν 's of mass $m_{\nu_l} \simeq M_D^T M_N^{-1} M_D$

- -m Heavy ν 's of mass $m_{\nu_H} \simeq M_N$
- The heavier ν_H the lighter $\nu_l \Rightarrow$ See-Saw Mechanism
- Natural explanation to $m_{\nu} \ll m_l, m_q$
- Arises in many extensions of the SM: SO(10) GUTS, Left-right...

Physics of Massive Neutrinos

Concha Gonzalez-Garcia

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
- Question: How to search for m_{ν} ?

Answer:

• In the <mark>SM</mark>:

- Accidental global symmetry: $B \times L_e \times L_\mu \times L_\tau \leftrightarrow m_\nu \equiv 0$
- neutrinos are left-handed (\equiv helicity -1): $m_{\nu} = 0 \Rightarrow$ chirality \equiv helicity
- No distinction between Majorana or Dirac Neutrinos
- If $m_{\nu} \neq 0 \rightarrow$ Need to extend SM
 - \rightarrow different ways of adding m_{ν} to the SM
 - breaking total lepton number $(L = L_e + L_\mu + L_\tau) \rightarrow \text{Majorana} \ \nu: \nu = \nu^C$
 - *conserving* total lepton number \rightarrow Dirac ν : $\nu \neq \nu^C$
- Question: How to search for m_{ν} ?

Answer: Tomorrow....