

atmospheric neutrinos

ν telescope: AMANDA event

time recorded on OM

AMANDA Event Signatures: Muons

muon neutrino interaction → track

$$v_{\mu} + N \rightarrow \mu + X$$

Event Reconstruction

• Time residuals:

- Tracks are recontructed by maximum likelihood
- Bayesian likelihood takes into account up-down asymmetry of the muon flux:

$$P(H \mid E) = L(E \mid H) P(H)$$

low energy μ -track - PE vs distance

AMANDA: time delay due to scattering

Understanding Ice and Calibrating AMANDA

- · In situ light sources
 - Ice properties
 - Relative PMT timing, gain
 - Response to electromagnetic showers
 - crosstalk
- · Downgoing cosmic-ray muons
 - Relative PMT timing, gain
- · AMANDA-SPASE coincidences
 - Directionality
 - Ice properties
- Atmospheric neutrinos
 - Full detector response

Ice Properties

- most challenging initial problems now understood using in situ lasers and LEDs
 - Disappearance of bubbles
 - Mapping of dust layers
- $\lambda_{\text{scatter}} : 6 \text{ m} 52 \text{ m}$
- λ_{abs} : 9 m 240 m

optics of ice

Measurements:

- in-situ light sources
- atmospheric muons

- scattering length 6 ~ 52 m
- absorption length 9 ~ 240 m
- sterile medium

Scattering in AMANDA ice

Absorption in AMANDA ice

absorption

Glaciology with Light

volcanic ash layer

light travels 600 meters

AMANDA: time delay due to scattering

event reconstruction

- Maximum Likelihood method
- Take into account time profiles of expected photon flight times
- Bayesian approach use prior knowledge of expected backgrounds and signals

Quality parameters: Example 1: The track length

 Short track length = more likely to be background

Quality parameters: Example 2: The smoothness

- The smoothness is a measure of how regular the photon density is distributed along the track.
- A well reconstructed muon track is more likely to have a high smoothness.

Quality Parameters

- Likelihood
- Zenith angle mismatch between two types of fits.
- Sphericity of Hits (Brem?)
- Track Length (is an energy cut, too)
- Smoothness of hits along the track
- Number of unscattered photons

- Combine 6 to a single event quality parameter.
- Only 2 for completed detector!

quality cut

2002 'standard' analysis

 normalization data/atmo-v-MC determined by tightening the cuts

Zenith distribution after final cuts

Optimized 2002 analysis

ATMOSPHERIC $oldsymbol{ u}$ & DIFFUSE FLUX LIMITS $oldsymbol{ u}_{\mu}$]

Neural Network energy reconstruction Regularized unfolding → energy spectrum

AMANDA test beams: atmospheric ν and μ

First spectrum > 1 TeV (up to 100TeV)

Phys. Rev. Lett. 90 251101 (2003)

Includes 33% systematic uncertainty

(E) < 2.58·10⁻⁷ GeV cm⁻² s⁻¹ sr⁻¹

calibration on cosmic ray neutrinos and muons

inverted analysis: use atmospheric muons to benchmark MC

 \cdot atmospheric ν_{μ} spectrum

100 TeV \sqrt{s}

atmospheric neutrino spectrum

zenith angle

number of PMT

AMANDA: final sample for atmospheric ν 's (6163 events)

atmospheric neutrinos – a high precision measurement

Channel	E _{th} (@ AMANDA)	Source (ε _{π,k})
Muons	≈ 400 GeV	≈ Pions (115 GeV)
Neutrinos	≈ 50 GeV	≈ Kaons (850 GeV)

E » critical energy ε_{π,k}: interaction dominate over decay

temperature increase ⇒ density decrease ⇒ more decays than interactions

IceCube Events

Step 1: Remove background of downgoing muons

Step 2: Isolate extraterrestrial events from "irreducible" background of atmospheric neutrinos

Strings	μ rate	v rate
AMANDA	80 Hz	4.8 / day
IC22	550 Hz	28 / day
IC40*	1200 Hz	110 / day
IC80*	1650 Hz	220 / day

AMANDA: $O(10^9)$ events/yr IceCube: $O(10^{10})$ events/yr

with 22 strings:

background: downgoing cosmic ray muons

~ 550 per second

signal:
upgoing muons
initiated by
neutrinos

~ 1 per hour

Neutrino event selection in IC22 and strategy for analyzing the neutrino energy spectrum

Dmitry Chirkin, *UW Madison*October 27, 2008

IceCube 22

first look at the Southern hemisphere: the muon sky is not isotropic

Tibet array: northern hemisphere

IceCube Events

Step 1: Remove background of downgoing muons

Step 2: Isolate extraterrestrial events from "irreducible" background of atmospheric neutrinos

Strings	μ rate	v rate
AMANDA	80 Hz	4.8 / day
IC22	550 Hz	28 / day
IC40*	1200 Hz	110 / day
IC80*	1650 Hz	220 / day

AMANDA: $O(10^9)$ events/yr IceCube: $O(10^{10})$ events/yr

IceCube (1/2) turns the corner at the horizon

